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Role of Osteoprotegerin and Its Ligands and Competing

Receptors in Atherosclerotic Calcification

Yin Tintut and Linda Demer

Vascular calcification significantly impairs cardiovascular physiology, and its mechanism is under investigation. Many of

the same factors that modulate bone osteogenesis, including cytokines, hormones, and lipids, also modulate vascular

calcification, acting through many of the same transcription factors. In some cases, such as for lipids and cytokines, the

net effect on calcification is positive in the artery wall and negative in bone. The mechanism for this reciprocal relation is

not established. A recent series of reports points to the possibility that two bone regulatory factors, receptor activator of

NF-kB ligand (RANKL) and its soluble decoy receptor, osteoprotegerin (OPG), govern vascular calcification and may

explain the phenomenon. Both RANKL and OPG are widely accepted as the final common pathway for most factors and

processes affecting bone resorption. Binding of RANKL to its cognate receptor RANK induces NF-kB signaling, which

stimulates osteoclastic differentiation in preosteoclasts and induces bone morphogenetic protein (BMP-2) expression in

chondrocytes. A role for RANKL and its receptors in vascular calcification is spported by several findings: a vascular

calcification phenotype in mice genetically deficient in OPG; an increase in expression of RANKL, and a decrease in

expression of OPG, in calcified arteries; clinical associations between coronary disease and serum OPG and RANKL

levels; and RANKL induction of calcification and osteoblastic differentiation in valvular myofibroblasts.
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Cardiovascular disease, most often due to athero-

sclerosis, is the leading cause of mortality and

morbidity in the United States,1 and osteoporosis is

the most common, disease of bone.2 Atherosclerosis,

vascular calcification, and osteoporosis correlate in an

age-independent manner with one another and with

hyperlipidemia and osteoprotegerin levels.3–11 The

mechanisms for these links are not understood.

Vascular calcification is present in half of middle-

aged individuals and in 90% of those over age 70

years.12 It particularly affects patients with athero-

sclerosis, diabetes, and end-stage renal disease.13 It

contributes substantially to cardiovascular morbidity

and mortality by destroying the artery’s normal

elastance, leading to systolic hypertension, left ven-

tricular hypertrophy, diastolic hypotension, coronary

insufficiency, congestive heart failure, aortic stenosis,

and, potentially, plaque rupture.12,14–21

Intimal and Medial Calcification

Intimal (atherosclerotic) calcification colocalizes

with atherosclerosis and correlates with plaque burden

and cardiovascular events.22–24 Medial calcification

occurs independently of atherosclerosis, primarily in

patients with end-stage renal disease and diabetes.

Intimal calcification appears to be driven by inflammatory

factors such as cytokines and atherogenic lipids.25,26 In

contrast, medial calcification appears to be promoted by a

variety of factors, including high leptin levels,27 hyper-

phosphatemia,28–30 uremia,31 hypercalcemia,32 hyper-

parathyroidism,33 warfarin,34 1-alpha,25-dihydroxy-

vitamin D3,
21,34–36 and pyrophosphate deficiency.37 In a

given individual, both intimal and medial vascular

calcification may occur, and more than one mechanism

may be operative. The final common pathway, if any, is

not known.
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Similarity to Osteogenesis

Atherosclerotic calcification shares many features

with embryonic osteogenesis. It involves the same

histologic transitional stages, including amorphous

mineral remodeling, invasion of preosteoblasts, and,

finally, formation of full bone tissue with trabecular

architecture.38–41 The full complement of osteogenic

factors and bone proteins is present in atherosclerotic

calcification, including bone morphogenetic protein 2

(BMP-2), which governs mesenchymal lineage acqui-

sition via Smad-dependent signals, Msx-2, Cbfa1, and

downstream effector molecules such as osteopontin,

matrix c-carboxyglutamic acid protein (MGP), and

bone sialoprotein.42–49 Thus, calcified atherosclerotic

lesions resemble bone in many ways.

In Vitro Vascular Osteogenesis

Vascular smooth muscle cells (SMCs) and closely

related cells, such as microvascular pericytes, calcifying

vascular cells, adventitial myofibroblasts, and cardiac

valvular myofibroblasts, express osteoblastic differentia-

tion markers and produce the bone mineral hydro-

xyapatite, with a characteristic time course44,46,48,50–55

nearly identical to that in skeletal bone cell osteogen-

esis.56 The process is governed by BMP-2 and master

osteogenic transcriptional regulators, such as Cbfa1 and

Msx-2.57 It is modulated by atherogenic lipids and

lipoproteins,25 lipoprotein receptor–related protein 5

and Wnt pathway members,49 transforming growth

factor (TGF)-b,58 cyclic adenosine monophosphate

agonists,48 1-alpha,25-dihydroxyvitamin D3,
59 war-

farin,34 tumor necrosis factor (TNF)-a,60,61 and mono-

cyte coculture.62 It is inhibited by high-density

lipoprotein,63 collagen IV and laminin,64 osteopontin,65

extracellular phosphate,51 parathyroid hormone (PTH)-

related peptide,59 and PTH itself, which, in turn, down-

regulates Msx-2.66

Bone-Vascular Connection

In vivo, bone and vascular mineralization may be

linked through endocrinologic mechanisms or they

may be independent, depending on the circumstances.

In metastatic vascular calcification, as occurs in patients

with osteolytic cancer or vitamin D overdose, vascular

calcification results from excess serum calcium.

Extremely rapid bone resorption, beyond that of

ordinary osteoporosis, can overcome the normally

tight endocrine regulation of serum calcium. As serum

calcium increases, the serum calcium-phosphate pro-

duct eventually exceeds the threshold required for

spontaneous crystallization in many tissues, including

arteries.67 High-dose vitamin D has been used to

produce experimental vascular calcification in rodents,

and factors that arrest the bone resorption consequently

inhibit the vascular calcification.68,69 Because of this

potential effect of excess bone resorption on vascular

calcification, genetic interventions to assess the direct

effects of genes on vascular calcification may need to be

vascular specific.

In many mouse models of vascular calcification,

including mice deficient in fibrillin, MGP, and

carbonic anhydrase, the skeleton is either normal or

hypermineralized, indicating that vascular calcification

does not require high bone-resorptive activity.70–72

Even some mouse models with both vascular calcifica-

tion and osteoporosis have normal serum calcium,

suggesting that the bone phenotype is not sufficiently

severe to induce metastatic calcification.

In atherosclerotic calcification, serum calcium and

phosphate are not elevated, and the association with

osteoporosis may be attributable to a common cause

such as hyperlipidemia and/or inflammation, which

have reciprocal effects on osteogenic differentiation in

bone versus vascular tissues.25,73,74 Although the

reciprocal response to inflammation recapitulates the

reciprocal response to chronic infection (calcification

in soft tissue versus osteolysis in bone), the signaling

mechanism is not known. One possibility is that the

reciprocal response is mediated via RANKL activity,

which has been shown to promote osteoclastogenesis

in bone and osteogenesis in SMCs.

RANKL and OPG in Bone

Regulation of receptor activator of nuclear factor-

kB (RANK) is now considered the final common

pathway for most mediators of bone catabolism.75

Binding of RANK to its ligand, RANKL, is essential

for the development and activation of osteoclasts.76 In

bone, RANKL is expressed as a transmembrane protein

on osteoblasts and marrow stromal cells, and when it

binds to RANK on the surface of preosteoclasts, it

induces osteoclastic differentiation and maturation.77

OPG blocks interaction of RANKL with RANK, thus

preventing osteoclast differentiation and bone resorp-

tion.77–79 High RANKL states cause osteoporosis owing

to excess resorption by osteoclasts.

RANKL expression in osteoblast lineage cells is low

at baseline,80 but it is up-regulated by osteolytic factors

such as inflammatory cytokines, 1,25-dihydroxyvitamin

D3, and dexamethasone in regions of bone that are

undergoing rapid turnover or osteolysis. These osteolytic

factors also inhibit OPG expression.81–87 RANKL can

be cleaved by the metalloproteinase TNF-a converting
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enzyme to release a soluble form (sRANKL). Like other

TNF receptor family members, RANK acts primarily

via nuclear factor (NF)-kB and Jun-N-terminal kinase

activation in preosteoclasts.84 It also activates p44 and

p38 mitogen-activated protein kinases, as well as the

phosphatidyl inositol-3 kinase pathway.88

As an aside, although RANKL, RANK, and OPG

recently were assigned new nomenclature, ‘‘tumor

necrosis factor superfamily member 11’’ and ‘‘TNF

receptor superfamily members 11a and 11b,’’ respec-

tively, the simpler nomenclature used in this review is

generally recommended for the bone literature.89

Mouse Models

In mouse models lacking RANKL/RANK signal-

ing, such as RANKL-deficient,76 RANK-deficient,90

and OPG-overexpressing78 mice, the lack of osteo-

clastic resorption results in rigid and overmineralized

‘‘osteopetrotic’’ bone with limited marrow cavities.

No vascular phenotype has been reported, and no

vascular findings are expected at baseline if RANKL is

the operative factor.

In contrast, mouse models with unopposed

RANKL activity develop osteoporosis. Soluble

RANKL treatment induces overactive osteoclastic

resorption in mice.77 Mice lacking OPG develop

osteoporosis.91 Mice with ubiquitous RANKL over-

expression die at the late fetal stage.92 A transgenic

mouse expressing soluble RANKL in the liver (driven

by a serum amyloid P promoter, SAP-rankltg) and

released in the circulation has osteoporosis, hypercal-

cemia, and abnormalities of lymphocytes, monocytes,

and dendritic cells.92 In these mice, the indirect effects

of the bone phenotype would also confound inter-

pretation of a vascular phenotype.

RANKL and OPG in the Artery Wall

All three members of the RANKL/OPG/RANK

system are expressed in vascular cells:

1. RANK is expressed in cultured umbilical and

microvascular endothelial cells (EC).88,93 Although

not found in normal arteries, it is expressed in the

calcified arteries of opg(2/2) mice.94

2. RANKL is not expressed at baseline in cultured

endothelial cells (ECs) or SMCs,88,95 but it is induced

in ECs by inflammatory cytokines and factors from

actively remodeling bone such as TGF-b.11,96

RANKL immunoreactivity is not found in normal

mouse arteries,94 but it is present in calcified vascular

tissue in humans47,55,97 and in opg(2/2) mice.94

3. OPG is expressed by cultured arterial ECs11,93,98

and SMCs.11,95,99 OPG immunoreactivity is

found in calcified human atherosclerosis,97 but,

in contrast with RANKL, it is expressed at higher

levels in the normal artery wall.94,100

RANKL and OPG in Vascular Calcification

The mechanism of vascular calcification in opg(2/2)

mice is not known. Given that these mice have normal

serum calcium and the vascular calcification is not

reversed by correction of the osteoporosis,91,94 it is most

likely not attributable (directly) to the osteoporosis.

Interestingly, in vitro evidence has shown that RANKL

induces osteoblastic differentiation and mineralization of

cultured cardiac valvular (myofibroblastic) cells.55 The

molecular regulatory mechanism for this phenomenon is

unknown. In osteoclasts, NF-kB is a major signaling

mechanism for RANKL activation of RANK.

Interestingly, NF-kB response elements have been

identified in the 59 regulatory region of BMP-2, and

NF-kB induces BMP-2 in chondrocytes.101,102

Chondrocytes from p50/p52 double mutants showed

decreased BMP-2.101 One possibility is that RANKL

induces vascular osteogenesis by activating NF-kB

signaling and up-regulating BMP-2 in SMCs.

Whereas OPG deficiency leads to mineralization in

the artery wall, it leads to demineralization in bone. A

possible explanation for this reciprocal effect is the

difference in the availability of osteoclast progenitor cells.

Normal bone has a rich supply of preosteoclasts from the

marrow, whereas normal artery wall has few, if any. Thus,

in bone, but not artery wall, unopposed RANKL activity

stimulates osteoclastic differentiation and resorption.

Given that the net result is an osteoporotic phenotype,

the osteoclastogenic effect of RANKL apparently

overrides any possible promineralization effect of

RANKL in bone, where preosteoclasts are abundant.

But, in the artery wall, a promineralization effect of

RANKL may be unmasked by the lack of preosteoclasts.

TRAIL in Vascular Calcification

OPG also serves as a decoy receptor for another

ligand, tumor necrosis factor–related apoptosis-indu-

cing ligand (TRAIL), which is expressed in the artery

wall, together with its receptor (TRAILR), which is

encoded by the gene dr5.103 Previous studies have not

linked TRAIL to vascular calcification. However,

TRAIL is known to induce apoptosis in certain cells,

including ECs.104 It is possible that TRAIL promotes

vascular calcification by inducing apoptosis. Apoptotic

bodies may serve as nucleation sites for crystal

formation similar to matrix vesicles, and Proudfoot
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and colleagues showed evidence of apoptosis in

vascular cell calcification.105 Another mechanism by

which TRAIL could contribute to vascular calcifica-

tion is by occupying OPG sites, which would

indirectly increase the effective availability of RANKL.

Clinical Cardiovascular Disease

Recent animal and clinical studies suggest that

serum OPG and RANKL levels are associated with

cardiovascular disease. Serum OPG correlates positively

with cardiovascular disease and mortality,106–109 whereas

serum RANKL levels correlate inversely with cardio-

vascular disease.109 Although this may appear to be

paradoxical, it may reflect an incomplete compensatory

response. It is not unusual for serum levels of protective

factors to be elevated in compensatory response to the

diseases they prevent. For example, matrix Gla protein,

which is recognized as an inhibitory factor in vascular

calcification, is increased in calcified lesions, and serum

OPG is elevated in a variety of conditions involving

persistent immune activation as a partial compensatory

response to proinflammatory activity of other members

of the TNF family.110 Similarly, natriuretic factors are

elevated in heart failure, yet they are successfully used as

treatment for heart failure. As another consideration,

OPG could be selectively increased in the circulation

and not in the artery wall by factors that selectively

induce OPG expression in the endothelium. This is

because ECs segregate and store OPG in their Weibel-

Palade bodies, which are selectively exocytosed into the

circulation. Thus, the serum levels of OPG may be

increased independently of levels in the medial layer of

the artery wall.

Summary

The RANKL/OPG/RANK system governs bio-

mineralization of the skeleton, and growing evidence

suggests that it has a role, possibly reciprocal, in

biomineralization of the artery wall. Overall, the

evidence clearly and consistently indicates that

RANKL stimulates differentiation and maturation of

osteoclast progenitor cells and that the net effect of high

RANKL activity on bone in vivo is excess resorption

and osteoporosis. Consequently, deficiency of its decoy

receptor, OPG, would have the same effects, and the net

effect of reduced OPG activity on bone in vivo is

osteoporosis. In contrast, recent evidence now suggests

that RANKL also stimulates osteoblastic differentiation

and mineralization in vascular cells. Atherosclerotic

calcification may result in part from the unopposed

activity of RANKL. Given that normal arteries lack

osteoclast progenitor cells, high RANKL activity would

be expected to stimulate calcification in the vasculature.

This would explain the finding of aortic calcification in

the OPG-deficient mice. Given that inflammatory

factors, as are present in atherosclerotic lesions, promote

RANKL and inhibit OPG, it is possible that the

reciprocal effects of hyperlipidemia on bone and artery

are mediated through disturbance of the RANKL/OPG

balance toward a RANKL-dominant state.
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