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Abstract: With advances in high-throughput genotyping technologies,
the rate-limiting step of large-scale genetic investigations has become the
collection of sensitive and specific phenotype information in large samples
of study participants. Clinicians play a pivotal role for successful genetic
studies because sound clinical acumen can substantially increase study
power by reducing measurement error and improving diagnostic precision
for translational research. Phenomics is the systematic measurement and
analysis of qualitative and quantitative traits, including clinical, biochemi-
cal, and imaging methods, for the refinement and characterization of a
phenotype. Phenomics requires deep phenotyping, the collection of a wide
breadth of phenotypes with fine resolution, and phenomic analysis,
composed of constructing heat maps, cluster analysis, text mining, and
pathway analysis. In this article, we review the components of phenomics
and provide examples of their application to genomic studies, specifically
for implicating novel disease processes, reducing sample heterogeneity,
hypothesis generation, integration of multiple types of data, and as an
extension of Mendelian randomization studies.
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G enome-wide association studies (GWASs), examining a
wide range of discrete and quantitative phenotypes, have

now been performed in many large cohorts. Mega meta-
analyses, including samples of more than 75,000 subjects and
often including more than 100 authors represent Herculean
collaborative efforts to identify phenotype-associated genetic
variants.1 Although the associated loci may be biologically valid
and important, the frequency and effect size of the identified
variants will become smaller because very large samples are
required to confidently identify the phenotype-genotype asso-

ciation signal. Thus, precision in subject ascertainment and
phenotype definition should be key elements in the investigation
of the genetic basis of complex diseases.2Y4

What are the main obstacles to successful identification
of genetic contributors to disease? Major culprits for reducing
the signal-to-noise ratio and obscuring phenotype-genotype
associations are measurement error and study heterogeneity.5,6

Geneticists are now accustomed to technologies with extraordi-
narily low imprecision: genotype miscall rates are typically less
than 0.5%.7 However, measurement error in phenotypes has
received substantially less attention. Confounding factors in ge-
netic studies, such as pleiotropy, incomplete penetrance, epis-
tasis, and allelic and locus heterogeneity, are unavoidable and
need to be considered in study design.5 However, study het-
erogeneity originating from clinical sources, such as phenocopy
or multiple pathways leading to a common disease phenotype,
can potentially be mitigated. Careful measurement not only of
the major phenotype of interest but also of environmental ex-
posures and subphenotypes, also known as biomarkers, endo-
phenotypes, subclinical traits, or attributes, can provide valuable
clues to the pathophysiology of each individual case.

Phenomics is the systematic measurement and analysis of
qualitative and quantitative traits, including clinical, biochemi-
cal, and imaging methods, for the refinement and characteriza-
tion of a phenotype.8 The importance of accurate phenotype
determination in association studies has already been proven
theoretically,6,9 and yet, phenomics has not generally received
the same scientific and technological attention as genomic anal-
ysis. As attention shifts from increasing sample size to increas-
ing diagnostic precision in the postgenomic era, the clinician,
in particular, can play a pivotal role for the collection of accu-
rate and complete phenotype information to ensure that genetic
investigations have maximal power to identify consistent
genotype-phenotype associations. Here, we further define and
describe applications of Bphenomics[ and provide examples
demonstrating its utility.

PHENOMICS
In its simplest form, a retrospective genetic association

study design involves the comparison of allele frequencies be-
tween a collection of affected cases and unaffected controls.3

Because additional covariates can increase the likelihood of an
individual becoming a case, attempts to match the cases and
controls for covariates such as age and sex are common. By
extending and increasing the sophistication of techniques for
describing and quantifying the phenotype of cases and controls,
phenomics holds the promise of similarly helping to reduce
study heterogeneity. Current evidence suggests that common
complex disorders are in truth extremes of quantitative traits, in
which additional information can be gained through precise,
quantitative phenotypic description.10 Phenomics is composed
of 2 separate components: Bdeep phenotyping[ referring to a
strategic and comprehensive approach toward data acquisition
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and Bphenomic analysis[ referring to the evaluation of pat-
terns and relationships between individuals with related phe-
notypes and between genotype-phenotype associations.2,11

DEEP PHENOTYPING
Deep phenotyping involves the development of a complete

picture of each study participant through the strategic collection
of a broad range of high-resolution phenotypes (Table 1). Phe-
notype resolution, or granularity, is the level of detail afforded to
phenotypic definition.12 The goal of deep phenotyping is to
characterize further as many of the contributing factors to the
Bcase[ definition as possible, which may allow for the removal
or correction of heterogeneity among research subjects. In
general, continuous quantitative phenotypes can better differ-
entiate between marginal and severe cases and generally allow
for more powerful statistical comparisons than do qualitative
traits. Deep phenotyping begins with the collection of a thor-
ough medical history, including a detailed account of environ-
mental exposures, a complete review of systems, and collection
of family history. Measurement of disease progression, an ex-
tensive panel of risk factors, and alternative measures of shared
disease pathways should be used to provide the most detailed
phenotype possible. By extending the detail, accuracy, and con-
text of trait acquisition, and then linking components, a more
complete phenotype can be generated for each individual.11

In their day-to-day work focusing on diagnosis, clinicians
use technologies that probe intermediate markers in pathways
underlying illness, including biochemical, serological, histo-
pathological, and noninvasive imaging methods. These assays

can be static, such as biochemical analysis of plasma or tissue
samples, or dynamic, such as provocative tests followed by
serial sampling performed in clinical investigation units. For
instance, in cardiovascular research, static biochemical pheno-
types include serum concentrations of insulin, fasting glucose,
triglycerides, low-density lipoprotein (LDL) and high-density
lipoprotein cholesterol levels. Dynamic phenotypes include
challenge by a stimulus or provocation of a response, such as
postprandial excursion of plasma metabolites or measurement
of insulin sensitivity using a euglycemic insulin clamp. Using
serial measurements to monitor progression or regression of
the phenotype, either in response to treatment or simply over
time, becomes a further dimension of the phenotype. Thus, the
same principles clinicians use to develop specific diagnoses can
be applied to phenomic research applications.

In addition to data quality and granularity, deep phenotyp-
ing requires optimal data-gathering conditions to reduce
technical variability and thus maximize the chance that the
observed variation is biological in origin. Whenever possible,
quantitative phenotyping methods should be performed using
standard operating procedures and be validated against reference
standards, with clear performance metrics, such as measurement
reliability and reproducibility. Replicate phenotypes from an
individual can be averaged, when appropriate. Multiple mea-
surement modalities, for instance, quantifying carotid athero-
sclerosis using both ultrasound andmagnetic resonance imaging,
may also bolster phenotype accuracy and precision.13 Overall,
deep phenotyping should include reliable, comprehensive, and
high-resolution assessment of the known components of the
phenotype of interest.

TABLE 1. Deep Phenotyping for a Comprehensive Phenomic Assessment

Components Example Methods Example Sample Data

Medical history Physician history, questionnaires Age, age of onset, diet, allergies, risk factors, triggering factors,
environmental exposures, complete review of systems, family history

Physical examination Anthropometric measurement,
medical devices

Height, weight, hip-to-waist circumference, BMI, BP, pulse,
heart sounds, retinal appearance, acanthosis nigricans

Quantitative
clinical investigations

Biochemical, serological,
immunological, pathological

CBC, insulin, fasting glucose, HbA1c, lipid profile, leptin, adiponectin,
CRP, ESR, rheumatoid factor, IL-2, blood clotting factors, ferritin,
liver enzymes

Imaging Ultrasound, x-ray, CT, MRI,
PET, angiogram

Sc-fat mass, liver fat content, cardiac hypertrophy, carotid plaque area,
intima media thickness, functional or perfusion scans

Sampling Phlebotomy, biopsies,
surgical specimens

Plasma, lymphocytes, tissue biopsies, resected tissue

BMI indicates body mass index; BP, blood pressure; CBC, complete blood count; CRP, C-reactive protein; CT, computed tomography scan; ESR,
erythrocyte sedimentation rate; HbA1c, glycosylated hemoglobin; IL-2, interleukin-2; MRI, magnetic resonance imaging; PET, positron emission
tomography; sc, subcutaneous.

TABLE 2. Phenomic Analysis Techniques

Techniques Example Methods Output

Physician assessment Integrated clinical assessment from physician experience Diagnosis
Heat maps 1- and 2-color maps of discrete and continuous data Visual representation of multidimensional data
Clustering Various clustering algorithms Dendrogram, sorted heat maps
Text mining Database and electronic medical record mining Extracting concepts and relationships from text
Pathway analysis Gene ontology, network analysis Potential gene-subphenotype associations,

gene-phenotype networks
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PHENOMIC ANALYSIS
Development of deep phenotypes creates difficult-to-

interpret multidimensional data. Luckily, visualization and
analysis techniques already exist for drawing conclusions from
multidimensional data (Table 2). Remarkably, Sneath14 de-
scribed a computational method to catalog and score similarities
between bacterial species to create a taxonomic classification
more than 50 years ago. Eisen et al.15 described a now widely
used method, using heat maps and clustering to identify groups
of coexpressing genes from highly multidimensional microarray
expression data. These techniques can easily be adapted for the
visual representation and analysis of human deep phenotypes.

The construction of a phenotype heat map consists of
placing either the major phenotype classes or individual subjects
in rows, and the quantitative or qualitative subphenotypes in
columns of a grid. In a 1-color heat map, black and white boxes
indicate the presence and absence, respectively, of an unambig-
uous discrete or qualitative phenotype or trait. For quantitative
traits, grayscale can be used to indicate degree of affection. In a
2-color heat map, one color can be used to indicate a positive
fold change from a normative value, whereas the other color
indicates a negative fold change from the normative value;
greater intensities indicate larger fold changes.

Once heat maps of quantitative or qualitative phenotype
data are generated, cluster analysis can help group similar
observations into subgroups for identifying potential relation-
ships between data subsets. Software can assist in constructing
and analyzing heat maps, such as Hierarchical Cluster Explorer
(www.cs.umd.edu/hcil/hce/).16 There are many types of cluster
analysis, although biologists are likely most familiar with
hierarchical cluster analysis from sequence and phylogenetic
evaluations.15 The output of hierarchical clustering is a den-
drogram, or relationship tree, in which all observations are
leaves and more closely related observations emanate from more
proximal branch points. Hierarchical clustering is a sequential
procedure that can be either agglomerative, which begins with
the 2 closest leaves and then adds the next closest leaf, and so on,
or divisive, which involves the iterative removal of the most
distant leaf.17 The major limitation of cluster analysis is its de-
pendence on the similarity metricVa measure of correlationV
that is used to calculate Bcloseness[ between any 2 observations.
For example, the similarity metric could include a weighting fac-
tor because 1 subphenotype measure may contribute more in-
formation toward the Bcloseness[ of 2 major phenotypes. Hence,
different weighting strategies could lead to different conclusions.
Nonetheless, cluster analysis is a tool to extract solutions from
complex multidimensional data, including phenomic data.

Text mining and pathway analysis strategies have also been
proposed for further refining deep phenotypes and uncovering
new gene-phenotype associations.12 In addition, text mining
techniques could be used for the development of phenotypes
from electronic medical records. Many well-known databases,
such as Online Mendelian Inheritance in Man (OMIM) and
PhenoGO, already house phenotype- and gene-disease associa-
tions.12 Gene otology (GO) and pathway analysis techniques,
also borrowed from gene expression studies, could provide new
insight into GWASs for hypothesis generation.18

ADVANCING GENOMIC STUDIES
THROUGH PHENOMICS

Implicating a Novel Disease Mechanism
We described Old Order Amish patients with a neonatal

syndrome of endocrine gland hypoplasia, cerebral anomalies,

FIGURE 1. Phenomic analysis to identify a syndrome as novel.
Phenomic analysis of 6 related congenital syndromes suggests
that endocrineYcerebro-osteodysplasia (ECO) is a unique
and distinct new syndrome. The heat map depicts clinical,
radiographic, and autopsy phenotype information, as well as
the results of genetic investigations. Each square is shaded from
white (absent) to black (present), with intermediate gray shading
indicating inconsistent presence. Hierarchical cluster analysis
produced a dendrogram, the tree at the top of the figure, which
illustrates the similarities between the syndromes. The additional
syndromes studied include Majewski (M), Mohr-Majewski (M-M),
Majewski-hydrolethalus (M-H), pseudotrisomy 13 (P13), and
hydrolethalus (HL). AR indicates autosomal recessive; CNS,
central nervous system; ICK, intestinal cell kinase gene.
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and severe osteodysplasia.19 Informed consent for study was
provided by the parents of affected children, and the study was
approved by the Office of Research Ethics at the University of
Western Ontario. Initial examination of the affected infants
suggested similarities to Majewski syndrome (OMIM: 263520)
and hydrolethalus syndrome (OMIM: 236680). Collection of
approximately 70 phenotype observations per patient and hier-
archical cluster analysis indicated that the infants were affected
with a novel disorder, subsequently named endocrineYcerebro-
osteodysplasia (Fig. 1), and further suggested that a novel
molecular mechanism could be responsible.19 Autozygosity
mapping and targeted sequencing identified a rare mutation,
proven through biochemical studies to be disease causing, in the
gene encoding intestinal cell kinase. Thus, phenomic analysis to
demonstrate both phenotype homogeneity among affected
children and the presence of a constellation of phenotypes in a
new syndrome of unknown etiology were important initial steps
in this study.

In biomedicine, there are numerous examples of insight
into normal human physiology gained from studying rare con-
ditions.20 Similarly, studies of induced mutant mice have
repeatedly shown the benefits of focusing on the phenotypic
differences resulting from altered function or expression of a
single gene. In humans, studies of naturally occurring rare
diseases using linkage and autozygosity mapping strategies have
become less common because attention has shifted toward
common complex conditions. However, studies of well-defined
rare syndromes still have their place, and with the reduced cost
of high-density genotyping arrays, mapping studies are feasible
in a laboratory with modest resources for even the rarest orphan
disease. Furthermore, with the proliferation of next-generation

genomic sequencing efforts, phenomic analysis of mutation
carriers will be essential to guide evaluation of the underlying
pathophysiology resulting from a novel mutation, following the
Breverse genetics[ paradigm.

Increasing Sample Homogeneity
We have quantified adipose tissue depots in patients with

lipodystrophy using magnetic resonance imaging to develop
highly resolved phenotypes.21Y23 Using phenomics, such quanti-
tative data have made clear the phenotypic distinctions between
individuals with different genetic forms of familial partial li-
podystrophy (FPLD), once considered to be a single entity
(Fig. 2).24,25 Familial partial lipodystrophy type 3 (FPLD3) has
milder adipose tissue atrophy but more severe metabolic com-
plications including insulin resistance, hypertension, dyslipid-
emia, and earlier-onset type 2 diabetes when compared with
FPLD type 2 (FPLD2).25 In addition, FPLD3 patients experience
blunted response to thiazolidinediones compared with FPLD2
patients.26

Finding analogous phenotypic distinctions in common
complex diseases could improve the signal-to-noise ratio for
genotype-phenotype association analysis. Again, using cardio-
vascular disease as an example, it has been suggested that the
Bdistance[ between underlying atherogenic mechanisms and dis-
ease end points may contribute to study heterogeneity.27 Through
phenomics, the identification of patient subgroups with a specific
mechanism leading to cardiovascular disease could improve the
discriminatory power for genetic association studies, although
making these distinctions and creating patient subgroups simul-
taneously reduces sample size.

FIGURE 2. Phenomic analysis to identify subphenotypes. A 2-color heat map of human lipodystrophy syndromes demonstrates that,
although clinically similar, careful phenomic analysis can clearly show phenotypic differences that may be the result of different molecular
etiologies. The included syndromes are congenital generalized lipodystrophy (CGL), acquired partial lipodystrophy (APL), metabolic
laminopathy (MLP), human immunodeficiency virusYassociated lipodystrophy (HIV-associated), and FPLD2 and FPLD3. The fold
change of severity or frequency was compared with normal reference range, with darker shades of red indicating increased severity
or prevalence of the feature and darker shades of blue indicating decreased severity or prevalence of the feature. Hierarchical cluster
analysis produced a dendrogram, which depicts the relationship between syndromes and indicates that FPLD2 and FPLD3, caused by
mutations within the nuclear lamin A/C gene (LMNA) and peroxisome proliferatorYactivated receptor-gamma gene (PPARG), respectively,
are clearly different by phenomic analysis. AGPAT2 indicates 1-acylglycerol-3-phosphate acetyltransferase 2 gene; BSCL2, Berardinelli-Seip
congenital lipodystrophy type 2 gene; CAV1, caveolin-1 gene; HDL-C, high-density lipoprotein cholesterol; LMNB2, nuclear lamin B2 gene;
TZD, thiazolidinedione.
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Generating Molecular Hypotheses
Pleiotropy, in which multiple disease phenotypes are

caused by mutations in the same gene, is illustrated by the
family of disorders called Blaminopathies,[ which are due to a
range of mutations within LMNA, which encodes nuclear lamin
A/C.8 Laminopathies include a diverse range of phenotypes
including partial lipodystrophy, dilated cardiomyopathy, mus-
cular dystrophy, and premature aging syndromes.8 Careful
analysis of the phenotypes in carriers of LMNA mutations
indicates some commonalities across this family of widely
disparate disorders.28 Application of phenomic heat mapping
and hierarchical clustering analysis identified 2 main classes of
laminopathies based on organ system involvement. The dis-
tribution of mutations across the lamin A/C domains was
nonrandom across the 2 laminopathy classes, suggesting that
mutation position relative to the nuclear localization signal do-
main may be an important determinant of the resultant complex
phenotype.28

Merging of Clinical, Biochemical, and Genomic
Information for Diagnosis Refinement

Incorporating genetic, biochemical, and phenotypic infor-
mation into a single analysis can further refine classic clinical
phenotypes. For example, the Fredrickson hyperlipoproteinemia

(HLP) phenotypes are defined by the quality and quantity of
plasma lipid subfractions after ultracentrifugation and have been
used clinically for decades.29 However, molecular genetics re-
search has uncovered the molecular pathways underlying many
of the HLP phenoypes.30 For example, mutations in the LDL
receptor (LDLR), proprotein convertase subtilisin/kexin-type 9
(PCSK9), and apolipoprotein B (APOB) can all produce HLP
type 2A, each by impairing different steps in the LDL cho-
lesterol metabolism pathway.30 Both rare mutations, such as
those in genes encoding lipoprotein lipase (LPL) and apolipo-
protein C2 (APOC2), and common single-nucleotide poly-
morphisms, such as those in glucokinase regulatory protein
(GCKR) and tribbles homolog 1 (TRIB1), contribute to overall
HLP susceptibility.31,32 Genomic resequencing and association
studies show that severe hypertriglyceridemia (HLP type 5) is a
mosaic of both common and rare genetic variants with a wide
range of effect sizes (Fig. 3).30Y33 Perhaps the traditional clas-
sification of lipid phenotypes will need to be readdressed in light
of discoveries into the disease-causing mechanisms gleaned
from genetic investigations. Knowledge of the exact disease-
causing mechanism in a specific patient from clinical, bio-
chemical, and genomic investigations may lead to a refinement
of diagnosis and identify patients who are most likely to benefit
from a specific pharmacological intervention.

FIGURE 3. Phenomic analysis to refine diagnosis. A 2-color heat map contrasts the similarities and differences between the
Fredrickson HLP phenotypes (HLP1-HLP5) and visually represents the contribution of both common single-nucleotide
polymorphisms and rare mutations. Defining features are listed in columns and HLP phenotypes are in rows. The fold change
of severity or presence was compared with normal reference range, with darker shades of red indicating increased severity or
prevalence of the trait and darker shades of blue indicating decreased severity or prevalence of the trait. Effect size of common
variants calculated from genotypes of 386 HLP patients collected at a tertiary referral lipid clinic.31 All patients provided informed
consent for research participation and genomic analysis, and the study was approved by the Office of Research Ethics at the University
of Western Ontario. ANGPTL3 indicates angiopoietin-like 3; APOA5, apolipoprotein A5; APOB, apolipoprotein B; APOC2, apolipoprotein
C-II; APOE, apolipoprotein E; ARH, autosomal recessive hypercholesterolemia; DBL, dysbetalipoproteinemia; FCH, familial combined
hyperlipidemia; FHC, familial hyperchylomicronemia; FH, familial hypercholesterolemia; FHTG, familial hypertriglyceridemia; GALNT2,
N-acetylgalactosaminyl transferase 2; GCKR, glucokinase regulatory protein; HDL, high-density lipoprotein; LDLR, low-density lipoprotein
receptor; LDLRAP, LDL receptor adaptor protein; LIPC, hepatic lipase; LPL, lipoprotein lipase; MHL, mixed hyperlipidemia; TBL2, transducin
A-like 2; TRIB1, tribbles homolog 1.
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Phenomics and Mendelian Randomization
Mendelian randomization (MR) uses the random assort-

ment of alleles at meiosis to evaluate a causal relationship be-
tween an intermediate biomarker and a disease end point.34,35

If a genetic variant is associated with the circulating concen-
tration of a biomarker, and the biomarker is causal for the dis-
ease end point, the genetic variant should also be associated with
the disease end point. There are several caveats to the inter-
pretation of MR studies, but in theory, MR can provide sup-
port for causal relationships.36 Efforts to curate databases of
genotype-phenotype associations are already underway for iden-
tifying networks of interrelated findings.12 Even if a genetic
variant-phenotype association does not surpass the stringent
significance threshold required in GWASs owing to multiple
testing, confidence would be increased if the genetic variant
is consistently associated with multiple intermediate steps in a
particular pathogenic pathway.18 A network of intermediate
steps could be characterized in the living study participant
through deep phenotyping and phenomic analysis.

SUMMARY
Owing to recent technological advances, the bar has been

raised for data quality and quantity in genetic association stud-
ies. To tease out the small genetic effects operating in complex
diseases, clinicians will be required to collect precise deep phe-
notypes to reduce measurement error, reduce study heterogeneity,
and further refine study populations. Through analysis of indi-
viduals with rare mutations identified through next-generation
sequencing, phenomics will play an important role in hypothesis
generation. Phenomics will create new diagnostic criteria through
the integration of clinical, diagnostic, and genetic information.
Finally, confidence in the biological meaning of genetic associa-
tions will be improved by assessing the genetic variants effect on
multiple components of a complex pathway.
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