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ABSTRACT
Molecular epidemiology is the study of genetic and
environmental risk for disease, with much effort
centered on cancer. Childhood leukemia occurs in
nearly a third of all patients newly diagnosed with
pediatric cancer. only a small percentage of these
new cases of childhood leukemia are associated
with high penetrant hereditary cancer syndromes.
Childhood leukemia, especially acute lymphoblastic
leukemia, has been associated with a dysregulated
immune system due to delayed infectious exposure
at a young age. Identical twins with childhood
leukemia suggest that acute lymphoblastic leukemia
begins in utero and that the concordant
presentation is due to a shared preleukemia
subclone via placental transfer. Investigation of
single nucleotide polymorphisms within candidate
genes find that leukemia risk may be attributed to
population-based polymorphisms affecting folate
metabolism, xenobiotic metabolism, DNA repair,
immunity, and B-cell development. More recently,
genome-wide association studies for leukemia risk
has led investigators to genes associated with B-cell
development. When describing leukemia
predisposition due to hereditary cancer syndromes,
the following 6 categories become apparent on the
basis of biology and clinical presentation: (1) genetic
instability/DNA repair syndromes, (2) cell cycle/
differentiation syndromes, (3) bone marrow failure
syndromes, (4) telomere maintenance syndromes, (5)
immunodeficiency syndromes, and (6) transcription
factor syndromes and pure familial leukemia.
understanding the molecular epidemiology of
childhood leukemia can affect the treatment and
tumor surveillance strategies for these high risk
patients and their family members.

Molecular epidemiology is the study of the
genetic and environmental causes of disease
and both their interactions together to under-
stand clinical risk, outcome, and prevention of
disease. The field of molecular epidemiology
has advanced rapidly with the introduction of
the genomic era, especially in the field
of cancer.1–3 Through many different types of
genomic investigations, we have learned a tre-
mendous amount about the molecular contri-
bution to disease distribution. The field of
molecular epidemiology continues to grow and
adapt at a rapid pace while new sequencing
technologies are introduced into studies. This
has been especially true in childhood leukemia,
where new advances in technology have

allowed for the relatively recent identification
of genetic risk factors for disease in both
general population and high risk, inherited
populations.
Childhood leukemia comprises nearly a third

of all new cancer diagnoses in children and
adolescents, making it one of the most
common forms of pediatric cancer.4–6 Despite
occurring so commonly, only a very small per-
centage of children diagnosed with leukemia
are thought to be due to familial or hereditary
cancer syndromes7; nevertheless, this small
fraction of cases has proven very informative to
our understanding of childhood cancer and
even has impacted clinical management. In con-
trast to the single-gene, high penetrant familial
disorders, many new studies being published
describe the presence of recurring, low pene-
trant risk alleles or single nucleotide poly-
morphisms (SNPs) that may contribute to
leukemia risk in children.8–10 The vast majority
of childhood leukemia is acute lymphoblastic
leukemia (ALL), which can be classified by
immune cell phenotype as B-cell ALL (the most
common) and T-cell ALL (less common and
typically more aggressive). The other type of
childhood leukemia includes acute myeloid leu-
kemia (AML). As described later, each type of
childhood leukemia can be associated with a
different hereditary cancer syndrome, and
sometimes a single syndrome can cause mul-
tiple leukemia subtypes. In addition to helping
understand individual disease risk, along with
possible clinical implications, the application of
molecular epidemiology in leukemia helps shed
light on the underlying biology of one of the
most common childhood cancers.

ALL EPIDEMIOLOGY
One of 2000 children will develop ALL, which
translates to more than 3250 new cases of child-
hood acute leukemia diagnosed annually in the
United States.11 12 Acute lymphoblastic leuke-
mia is slightly more frequent in boys versus
girls11 and in Hispanic and non-Hispanic whites
versus African Americans,11 and most com-
monly presents in children between the ages of
2 to 6 years, the so called “common ALL.”4 6 11

Many theories exist to the causes of childhood
leukemia, but no single unifying theory has yet
been able to explain all cases. The general con-
sensus now seems to point to a dysregulated
immune response to infection as contributing to
leukemia risk, due to either lack of infectious
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exposure, genetic impairment of response, or a combination
of both of these factors. The population mixing hypothesis
by Kinlen13 14 bases leukemia risk on exposure to demo-
graphic mixing and subsequent introduction of a viral infec-
tion to previously unexposed individuals in the perinatal
period. The delayed infection hypothesis by Greaves15 16

describes leukemia risk due to delayed exposure to a
common infection and an evolutionary mismatch between
immune system exposure and modern, hygienic lifestyle.
Fascinatingly, Greaves et al.17 have demonstrated preleuke-
mic clones in dried newborn blood spots at birth, suggesting
that the first preleukemic “hit” occurs before delayed infec-
tious exposure. Greaves et al.18 also have described con-
cordant ALL in identical (monozygotic) twins with shared
identical translocation breakpoints, suggesting again that the
first hit of ALL occurs in utero and, in the case of twins, the
preleukemia clone has crossed across the placenta.
Considering this molecular epidemiological evidence, an
accepted model of ALL risk follows a combination of
chance, exposure, and inherited genetic variation leading to
in utero initiation followed by postnatal promotion and
finally leukemia.4 As covered below, the process ofleukemia
risk can be accelerated in the setting of hereditary cancer
syndromes.

CANDIDATE GENE APPROACHES
Initially, while investigation began into the molecular epi-
demiology of childhood leukemia, one of the approaches
was to explore specific “candidate genes” that could con-
tribute to leukemia risk. Using technological approaches
available at the time, study investigators most often looked
at SNPs within single genes that were thought to be
involved in the process of leukemia development and pro-
gression. When reviewing the hundreds of published
studies available, the majority of these candidate genes
associated with the biology of ALL can be divided into the
following 5 main categories: (1) folate metabolism/trans-
port, (2) xenobiotic metabolism/transport, (3) immune
function, (4) DNA repair, and (5) cell cycle.9 10 Many of
these studies have mixed and even conflicting results, dem-
onstrating the difficulty in identifying risk genes for cancer.
Nevertheless, several candidate genes seem to suggest an
association with ALL risk and include MTHFR C677T
(folate metabolism),19–27 CYP1A1 TP235C (xenobiotic
metabolism),28 29 GSTM1 deletion (xenobiotic metabol-
ism),29–34 NAT2*5 (xenobiotic metabolism),30 35–38

XRCC1 G28152A (DNA repair),39 40 and HLA-DRB4
(encoding HLA-DR53 immune antigen).41–43

GENOME-WIDE ASSOCIATION STUDIES
The introduction of SNP microarrays offered the possibility
of studying hundreds of thousands, sometimes millions, of
SNPs and their cancer risk in a simultaneously agnostic
approach in what has become known as the genome-wide
association study (GWAS). Several GWAS have been per-
formed in the past few years on DNA from thousands of
children diagnosed with leukemia. These GWAS have dis-
covered SNPs within the following genes associated with
growth regulation, hematopoiesis, and lymphocyte devel-
opment: IKZF1 (7p12.2), CDKN2A (9p21.3), ARID5B
(10q21.2), and CEBPE (14q11.2) genes.44–49 These find-
ings, seen in children from European descent, lead to

almost a 3-fold risk for leukemia and are among the stron-
gest cancer susceptibility variants identified through
GWAS.50 In multiethnic populations (including African
Americans and especially Hispanic Americans), other risk
alleles have been identified, such as ARID5B, CEBPE,
BMI1-PIP4K2A variants, and hyperdiploid subtype.51–53

Most recently, GATA3 was identified through GWAS to be
a risky allele for ALL diagnosed in adolescents and young
adults.54 Although these GWAS findings probably account
for less than 10% of genetic variation in ALL risk, they still
suggest that genetic factors play a strong role in the devel-
opment of childhood ALL.55

INHERITED PREDISPOSITION SYNDROMES
When discussing the leukemia-associated inherited cancer
syndromes, it is helpful to divide these syndromes into the
following 6 main categories based on biological functions
and affected pathways: (1) genetic instability/DNA repair
syndromes, (2) cell cycle/differentiation syndromes, (3)
bone marrow failure syndromes, (4) telomere maintenance
syndromes, (5) immunodeficiency syndromes, and (6) tran-
scription factor syndromes including pure familial leuke-
mia. See Table 1 for the list of associated syndromes and
genetic mutations for each category. For the purposes of
this report, we will focus on the first category of genetic
instability and DNA repair syndromes.

GENETIC INSTABILITY/DNA REPAIR SYNDROMES
Although leukemia is typically not the primary malignancy
often seen in these syndromes, it still plays an important
role in cancer risk. Also, once diagnosed, individuals with
these types of syndromes need to have treatment tailored
to avoid excessive toxicity from their chemotherapy and
radiation treatment. These syndromes offer an excellent
example of how the application of molecular epidemiology
in pediatric leukemia can impact patient care.

Li-Fraumeni syndrome (LFS) is due to TP53 mutations
and is associated with multiple cancer types including sar-
comas, breast, and bone cancer.56 57 This is a highly pene-
trant cancer syndrome and occurs in the population at an
estimated prevalence of 1/5000 to 1/20,000.58 59 Acute
lymphoblastic leukemia, AML, and bone marrow myelo-
dysplastic syndrome (MDS) have been reported, with
hematological malignancies occurring about 1% to 3% of
the time.59–62 Nearly half of patients with hypodiploid
ALL might have germline TP53 mutations,63 64 making it
prudent to check for LFS in any patients diagnosed with
hypodiploid ALL regardless of family history. Although leu-
kemia surveillance is still being studied in LFS, some have
recommended annual complete blood counts as part ofa
biochemical screening program for early cancer
detection.65

Biallelic mismatch repair syndrome is caused when two
of the following mismatch DNA repair alleles are inherited:
MLH1, MSH2, MSH6, and PMS2. Normally just associated
with Lynch syndrome (hereditary nonpolyposis colon
cancer),66 patients with biallelic (homozygous) alterations
in the mismatch repair genes have multiple café-au-lait
spots, pediatric brain tumors, and an especially high rate of
pediatric hematological malignancies including both ALL
and AML.67–71 The population prevalence of Lynch syn-
drome is high at 1/440;72 therefore, the biallelic mismatch
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repair syndrome would be estimated to be as low as 1/
775,000. Any child presenting with leukemia who also has
several café-au-lait spots and/or a family histoiy of colorec-
tal cancer should be considered for testing for biallelic mis-
match repair syndrome.

Fanconi anemia is often an autosomal recessive (AR) dis-
order of chromosomal breakage due to germline mutations
in one of the 15 complementation groups, including
FANCA-C, FANCD1-2, FANCE-G, FANCI-J, and
FANCL-P.73 Typically, Fanconi anemia is diagnosed through
a combination of bone marrow failure and its distinct

physical characteristics including short stature, microceph-
aly, microphthalmia, epicanthal folds, dangling thumbs,
ureteral defects, congenital dislocated hips, and rocker
bottom feet.73 Fanconi anemia diagnosis can be compli-
cated as up to 25% of affected individuals who do not
display significant dysmorphology, and the disorder has
high genetic het- erogeneity.73 Bone marrow failure often
occurs between ages 5 to 15 years, 4 and just under 10%
may develop AML or MDS.75 76 The cumulative probabil-
ity of leukemia is nearly 40% by age 30 years, and MDS
has a 50% cumulative incidence by age 50 years. Patients

Table 1 Leukemia predisposition and its associated hereditary cancer syndromes, modified from Malkin et al.8

Leukemia predisposition
category Syndrome Gene(s)

Inheritance
pattern Leukemia type Leukemia risk

DNA repair/genetic instability LFS TP53 AD ALL, MDS, AML 1%–3%
Biallelic mismatch repair
syndrome

MLH1, MSH2, MSH6, PMS2 AR ALL, AML Unknown, but
high

Werner syndrome WRN AR AML, MDS Unclear
Rothmund-Thomson RECQL4 AR MDS Unclear
Bloom syndrome BLM AR AML, ALL, MDS 15%
Fanconi anemia FANCA-C, FANCD1-2,

FANCE-G, FANCI-J, FANCL-P
AR except for
FANCB, which is
XL

MDS/AML 7% MDS, 9%
AML 500-fold
AML

Ataxia telangiectasia ATM AR ALL 70-Fold leukemia
Nijmegen breakage
syndrome

NBS1 AR ALL, T-cell
lymphoblastic
lymphoma/ALL

Unclear

Cell cycle/differentiation (RAS
pathway dysfunction)

Noonan syndrome PTPN11, SOS1, KRAS, NRAS,
RAF1, BRAF, SHOC2, MEPK1

AD TMD, JMML, CMML,
ALL

Unknown, but
high

CBL syndrome CBL AD JMML Unknown
Neurofibromatosis type 1 NF1 AD CMML/JMML, AML 11%MDS 200-fold

to 500-fold JMML
Bone marrow failure Diamond Blackfan anemia RPS19, RPS24, RPS17,

RPL35A, RPL5, RPL11, RPS7,
RPS26, RPS10, GATA1

De novo and AD MDS/AML, ALL 5%

Shwachman-Diamond SBDS AR MDS/AML, ALL 5%–24%
Amegakaryocytic
thrombocytopenia

MPL AR MDS/AML Unknown, rare
reports

Thrombocytopenia and
absent radii

RBM8A Del 1q21.1 AR MDS/AML Unknown, rare
reports

Severe congenital
neutropenia/Kostmann

ELANE, G6PC3, GFI1, HAX1,
CSF3R

AD, AR MDS/AML 8%–25%

Telomere maintenance Dyskeratosis congenital CTC1, DKC1, TERC, TERT,
TINF2, NOP10, NHP2,
WRAP53

XL, AD, AR MDS/AML 3%–33%

Immunodeficiency Wiskott-Aldrich WAS XL ALL 2%
Bruton
agammaglobulinemia

BTK XL ALL Unknown, rare

Transcription factor Familial AML due to
CEBPA mutations

CEBPA AD MDS/AML Unknown,
younger onset

Familial platelet disorder RUNX1 AD MDS/AML 35% AML, young
onset

MonoMac GATA2 AD MDS/AML 50%
Familial PAX5 syndrome PAX5 AD ALL Unknown, but

high
Familial SH2B3 syndrome SH2B3 AR ALL

Unknown Familial mosaic monosomy
7

Unknown Unknown MDS/AML Very high, early
onset

Aneuoploidy Down syndrome Trisomy 21 De novo TMD, AML, ALL 10% TMD, 1%–

2% ALL-AML

CMML indicates chronic myelomonocytic leukemia; JMML, juvenile myelomonocytic leukemia; TLBL, T-cell lymphoblastic lymphoma; TMD, transient myeloproliferative
disorder; XL, X-linked.
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with Fanconi anemia remain very sensitive to
DNA-damaging agents, especially radiation, and treatment
often will be modified from standard care due to the high
rate of secondary malignancy. Recommendation for surveil-
lance for hematological malignancies in Fanconi anemia
including measuring complete blood counts along annual
bone marrow evaluation for changes in morphology, cellu-
larity, and cytogenetics.73

Ataxia telangiectasia is caused by ATM mutations, and
patients experience progressive ataxia with central nervous
system degeneration, growth deficiency, ocular and facial
telangiectasia, immunodeficiency, and a very high risk for
hematological malignancies.77 78 Patients with ATM muta-
tions experience a 70-fold increase in leukemia risk, mostly
ALL.79 Due to an extreme sensitivity to ionizing radiation
and risk for secondary malignancies, treating oncologists
need to modify therapy accordingly. Despite the high risk
for leukemia, no consensus on hematologic surveillance has
been recommended for patients with Ataxia telangiectasia
although patients should be aware of signs of malignancy
including weight loss, bruising, and localized pain or
swelling.78

Nimegen breakage syndrome is caused by germline muta-
tions in the NBS1 gene, responsible for DNA double-strand
break repair in the same pathway as ATM80 with some of
the same chromosomal breakage patterns seen in cells from
patients with Ataxia telangiectasia.81 Patients with Nimegen
breakage syndrome have distinctive dysmorpholgy, growth
deficiency, immunodeficiency, cognitive impairment, and
increased cancer risks approach 40% to 50%.77 82 83 Most
frequently, patients with Nimegen breakage syndrome will
develop lymphoma although a smaller percentage of indivi-
duals will develop ALL.83 Also similar to Ataxia telangiecta-
sia, patients with Nimegen breakage syndrome need
specifically tailored cancer treatment due to their extreme
sensitivity to radiation and chemotherapy. Anyone found to
have Nimegen breakage syndrome should be monitored for
general signs of malignancy.82

Bloom syndrome is an AR disease due to BLM germline
mutations, which is a helicase gene integral for double
stranded DNA break repair.84 Bloom syndrome lympho-
cytes reveal a high frequency of characteristic sister chro-
matid exchanges and quadriradial configurations.85 86

Ashkenazi Jews carry the c.2207_2212delinsTAGATTC in
BLM with an estimated carrier frequency of 1/100 due to a
founder affect.77 85 With less than 300 cases reported, our
knowledge about the natural history of this syndrome
comes from the Bloom Syndrome Registry.87 Cancer is the
most common cause of death, and patients have 25%
cancer risk with multiple different tumor types developing
at an early age of onset around 25 years.77 Twenty-one
cases of acute leukemia were documented. Among the 168
registered patients with Bloom syndrome, 21 patients were
documented acute leukemias (ALL, 6; AML, 6; biphenoty-
pic, 2; and unspecified/other, 7).87 Similar to the other
DNA repair syndromes described, patients with Bloom syn-
drome are sensitive to radiation and chemotherapy and
therefore require specifically tailored treatment.85

In addition to the above syndromes related to genetic
instability and DNA repair dysfunction, several other her-
editary cancer syndromes have also been described with
leukemia predisposition as either a major or minor

component. As reported previously, many of these can be
grouped into one of the following remaining categories:
cell cycle/differentiation syndromes, bone marrow failure
syndromes, telomere maintenance syndromes, immunodefi-
ciency syndromes, and transcription factor syndromes with
pure familial leukemia. A comprehensive description of
these other syndromes with associated leukemia risk is
beyond the scope of the current report, but the reader is
directed to the 2 following reviews by Seif (2011)7 and
Stieglitz and Loh (2013)88 for an excellent summary of leu-
kemia predisposition. Understanding the genetic risk for
childhood leukemia is very important to identify children,
and their family members, who may be at risk for heredi-
tary cancer predisposition.89 As discussed above, this has
clear implications for treatment strategy and avoidance of
therapy that may lead to secondary malignancies. In add-
ition, if other family members are found to harbor the
same genetic mutations, then they can be appropriately
managed through early clinical screening and surveil-
lance.90 In summary, molecular epidemiology has identified
several important genetic causes of leukemia risk for both
the general population and those with inherited cancer syn-
dromes. Understanding this connection has increased our
knowledge about the biology and development of leuke-
mia, as well as provided important insight into the appro-
priate clinical management of these patients. While our
genomic technologies continue to improve, even more
information will be learned about leukemia predisposition
and how to use this knowledge to impact the care of chil-
dren and adults with acute leukemia.
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