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Abstract
Alzheimer’s disease (AD) is a neurodegenerative 
brain disorder associated with relentlessly 
progressive cognitive impairment and memory loss. 
AD pathology proceeds for decades before cognitive 
deficits become clinically apparent, opening a 
window for preventative therapy. Imbalance 
of clearance and buildup of amyloid β and 
phosphorylated tau proteins in the central nervous 
system is believed to contribute to AD pathogenesis. 
However, multiple clinical trials of treatments aimed 
at averting accumulation of these proteins have 
yielded little success, and there is still no disease-
modifying intervention. Here, we discuss current 
knowledge of AD pathology and treatment with an 
emphasis on emerging biomarkers and treatment 
strategies.

Introduction
Alzheimer's disease (AD) is a progressive, irre-
versible disabling neurodegenerative disorder 
characterized by memory loss, cognitive dysfunc-
tion and behavioral changes.1–3 It is the leading 
cause of dementia, affecting approximately 46.8 
million people globally.4–6 At the molecular level, 
pathological changes in the brain that are hall-
marks of AD include intracellular neurofibrillary 
tangles (NFTs) containing hyperphosphorylated 
tau protein and insoluble extracellular β-amy-
loid (Aβ) plaques.7 8 Pathological changes in the 
brain precede clinical symptoms and, therefore, 
diagnosis, by decades.9–11 The debilitating effects 
of AD impose an enormous social, emotional 
and economic burden on patients and their 
families.6 12 The etiology of AD remains unclear 
and, despite research programs costing billions 
of dollars and numerous successful approaches 
in mouse models, at this time, there are no 
effective treatments for AD.13–16 Mild symp-
tomatic benefits are all that can be offered. This 
symposium will explore the underlying reasons 
for failure in developing effective drugs and 
will suggest possible new directions to improve 
prognosis for this devastating disease.

Amyloid precursor protein (APP) 
processing and Aβ formation
The amyloid cascade hypothesis is a widely 
accepted model of AD pathogenesis that 

postulates an imbalance between production 
and clearance of the Aβ peptide leading to brain 
deposition of Aβ as the cause of AD.17 18 Accu-
mulation of Aβ occurs in the AD brain, and in 
familial forms of the disease, this is thought 
to be due to overproduction, whereas in most 
late-onset forms of the disease, it is thought to 
be due to insufficient clearance.19 Based on the 
amyloid cascade hypothesis and the presence 
of Aβ in the AD brain, numerous treatments 
have been devised to reduce Aβ load as a way to 
halt or slow AD progression. Despite multiple 
failures, the hypothesis continues to drive the 
development of potential AD treatments.20 21

The proteolytic processing of APP determines 
whether Aβ will be generated (figure 1).22 The 
three enzymes that control this process are 
α-secretase, β-secretase (β-site APP-cleaving 
enzyme (BACE) 1) and γ-secretase. APP can 
enter either an amyloidogenic or a non-
amyloidogenic pathway, depending on which 
of these secretases act on it. The amyloidogenic 
pathway begins with BACE1 releasing a soluble 
APP fragment and leaving in the membrane a 
99 amino acid C-terminal fragment (CTF-β).23 
This fragment is then cleaved by γ-secretase at 
slightly different positions, producing Aβ1-40 
and Aβ1-42, as well as a cytoplasmic peptide, the 
amyloid precursor protein intracellular domain 
(AICD). The non-amyloidogenic route starts 
with APP cleavage by α-secretase in the middle 
of the Aβ domain, freeing a soluble ectodomain 
(sAPP-α) and a membrane-bound C-terminal 
APP fragment of 83 amino acids (CTF-α). 
Further cleavage within the transmembrane 
domain by the γ-secretase complex yields the p3 
peptide fragment and the AICD.

Rodent models
Transgenic mice overexpressing APP have been 
used in myriad studies and have proven to be 
a valuable in vivo model, contributing tremen-
dously to our understanding of AD pathophys-
iology.24–29 However, there is a disconnect 
between efficacy of treatment in rodent models 
and failure when attempts are made to trans-
late to humans. In theory, Aβ removal or inter-
ference with Aβ aggregation will improve the 
signs and symptoms of AD. Unfortunately, this 
holds true in mice, but for reasons that we have 
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Figure 1  APP processing via non-amyloidogenic and 
amyloidogenic pathways. The left side of the figure shows non-
amyloid-forming reactions in which APP is cleaved by α-secretase 
to form sAPP-α, then by γ-secretase to yield P83 and AICD 
(amyloid intracellular domain). The right side of the figure shows 
amyloid-forming reactions in which APP is cleaved by BACE1 to 
form sAPP-β, then by γ-secretase to yield Aβ and AICD. AICD, 
amyloid precursor protein intracellular domain; APP, amyloid 
precursor protein; BACE1, β-site APP-cleaving enzyme; CTF-β, C-
terminal fragment; sAPP-β, soluble APP fragment.

Box 1 P roblems with current strategies to develop 
Alzheimer’s disease (AD) treatment

►► Treatment success in AD animal models has not 
translated to humans.

►► Multiple attempts to use anti-amyloid antibodies by 
drug companies have been unsuccessful, and some have 
given up, rather than trying to go in another direction.

►► No good biomarker to predict who will develop AD. 
Accurate prediction allows intervention before too much 
neuronal loss.

►► No way to screen potential treatments for human 
efficacy other than 5 or 10 years of administering to 
humans or trying it on animals.

►► Lack of direct access to the neurons in the brain of the 
affected individual.

►► No personalized approach or precision medicine as we 
see for many cancers.

to work out, it does not yield the same improvement in 
people28 30–32 (box 1).

Alzheimer’s pathology and imaging
The AD brain is notable for the presence of senile plaques of 
insoluble Aβ1-40 and Aβ1-42 and NFTs of tau, a microtubule-
associated protein that is normally involved in axonal trans-
port.33 34 The plaques are composed primarily of fibrillar 
Aβ deposited extracellularly. Neuritic plaques, a subset 
of senile plaques, are most closely linked to synaptic loss, 
have a dense core and are found associated with dystrophic 
neurons and activated microglia. Tangles are intracellular 
and consist of paired-helical filaments of hyperphosphor-
ylated tau protein.35 36 These pathological changes occur 
decades before initial clinical symptoms manifest.37 38

Aβ pathology can be imaged in human brain tissue in vivo 
by positron emission tomography (PET) using amyloid-β 

radiotracers.39 40 The use of fluorodeoxyglucose-PET has 
allowed documentation of decreased glucose metabolism in 
the AD brain, generally occurring earliest in the posterome-
dial cortex and also in the temporal regions and correlating 
with neuronal or synaptic loss.41 42

PET also allows for in vivo evaluation of tau, and this is 
important because it has been shown that NFTs correlate 
with cognitive decline in AD better than amyloid.43–45 
The PET tracer fluorine 18–labeled [18F] flortaucipir 
(AV1451) binds to the paired helical filaments of tau in 
NFTs and correlates well with cerebrospinal fluid (CSF) 
tau content.46–48 A recent report found that older persons 
carrying the ApoE4 allele have greater taupathy in the 
medial temporal area of the brain, indicating that ApoE4 
status may affect not only brain Aβ but also tau. However, 
the link among ApoE4, tau and AD is not established here.49 
At this time, imaging for neither Aβ nor tau is currently 
used in routine clinical practice, and CSF measures are also 
not routine.50

The American College of Radiology and the American 
College of Neurology each recommend structural imaging, 
such as non-contrast MRI in the evaluation of patients 
suspected of having AD.51 52 Atrophy of the brain is a 
frequent finding on MRI in AD and correlates poorly to the 
degree of cognitive impairment.53 Hippocampal atrophy 
is a validated AD biomarker.54 In general, the pattern of 
progression begins with early atrophy in the superior 
temporal region and the hippocampus, then subsequently 
in the amygdala and the remaining temporal regions and 
even later in the frontal association cortices.55 56 Ventricular 
enlargement accompanies atrophy of the gyri and expanded 
sulci, indicating loss of both grey and white matter. As 
expected, a decrease in brain weight has been observed.

Although imaging can show signs of incipient dementia 
before it becomes clinically overt, by the time imaging is 
abnormal, substantial neuronal loss has occurred.57 Further, 
progression from mild cognitive impairment to AD may be 
predicted with reasonable accuracy, but this does not lead 
to better outcome.58

Current and future treatment: the obstacles 
to success
There is no disease-modifying therapy for AD at this 
time.15 59 Only modest symptomatic relief for between 6 
and 18 months can be achieved, generally by using cholin-
esterase inhibitors to prevent degradation of acetylcholine 
and by using the glutamate receptor antagonist memantine 
to attenuate excitotoxicity.60 Acetylcholine is a neurotrans-
mitter and neuromodulator that plays a critical role in 
forming and retrieving memories and maintaining atten-
tion. Cholinesterase inhibitors are the first-line medications 
in the treatment of AD. They slow the degradation of acetyl-
choline in the synaptic cleft, thus treating the symptoms of 
AD by increasing cholinergic function in the brain.61 The 
currently available cholinesterase inhibitors most frequently 
prescribed are donepezil, rivastigmine, and galantamine.62 63 
Although cholinesterase inhibitors can slow symptoms of 
AD dementia, they do not alter the inevitable neurodegen-
eration and cognitive decline.64 The N-methyl-D-aspartate 
antagonist memantine may delay cognitive decline, 
although not as effectively as cholinesterase inhibitors, 
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Table 1  AD treatments targeting Aβ and results in human trials

Drug Action Route of administration Key findings

Aducanumab108 High-affinity, fully humanized monoclonal antibody 
that binds aggregated forms of Aβ

Intravenous Did not slow cognitive decline, but a larger dataset 
showed high dose associated with reduced clinical 
decline in early AD

Crenezumab109 Fully humanized monoclonal antibody against human 
Aβ1–40 and Aβ1–42

Intravenous or subcutaneous Interim analysis showed unlikely to reach primary 
endpoint of change from baseline on a clinical 
dementia assessment

Bapineuzumab110 Humanized monoclonal antibody binds the 5 N-
terminal residues of Aβ and clears both fibrillar and 
soluble forms

Intravenous or subcutaneous Did not meet primary endpoints, no treatment effect 
on cognitive or functional outcomes.

Solanezumab111 Humanized monoclonal antibody binds the mid-
domain of Aβ and clears monomers

Intravenous Did not meet primary endpoint of change from 
baseline on a cognitive assessment scale

Elenbecestat112 Small molecule BACE1 inhibitor Oral Unfavorable risk-to-benefit ratio

Verubecestat80 Small molecule inhibitor of BACE1 and BACE2 Oral Modest worsening in mean cognition scores versus 
placebo

Atabecestat113 Small molecule inhibitor of BACE1 Oral Halted due to liver toxicity

Lanabacestat114 Small molecule inhibitor of BACE1 Oral Faster cognitive decline with drug than placebo

Semagacestat115 Inhibitor of γ-secretase Oral Interim analysis showed worsening of cognitive 
function and excess skin cancers.

AD, Alzheimer's disease; BACE, β-site APP-cleaving enzyme.

and can be helpful in controlling agitation.65–67 Meman-
tine, either as part of a multidrug regimen or by itself, is 
most clinically beneficial in people with moderate-to-severe 
AD.68 Memantine and anticholinesterase therapies are often 
combined, but it is not clear whether these are superior to 
the cholinesterase inhibitor alone.69

Based on observational studies, lifestyle and health 
behaviors may delay or slow cognitive deterioration in 
AD.70 Modifiable factors that may benefit persons at risk 
of AD include physical activity, maintaining good nutrition, 
controlling blood pressure and diabetes, and pursuing social 
activities.71–73 Avoiding obesity and tobacco and alcohol use 
are all beneficial to general health and possibly as measures 
to postpone clinical manifestations of AD.74–76

According to the amyloid hypothesis, Aβ removal or 
interference with Aβ aggregation will improve the signs 
and symptoms of AD.77 78 Unfortunately, what is effective 
in mice, for reasons that are numerous and yet to be fully 
explained, does not translate to humans. Further, some anti-
amyloid treatments have caused unacceptable side effects, 
such as meningoencephalitis, brain edema, and brain micro-
hemorrhage. The many failures in clinical trials of active 
and passive immunotherapies to remove Aβ have led some 
pharmaceutical companies to close their neurology divi-
sions and cease working on AD79 80 (table 1).

Another impediment to designing treatments is the lack 
of early predictors of who will develop AD (box 1). Iden-
tification of patients with AD before they have undergone 
significant neurodegeneration becomes crucial if we are to 
preserve cognitive function.79 Current methods have limited 
accuracy in predicting progression to AD, and the search for 
better biomarkers and imaging techniques is ongoing.81–84 
Currently, CSF biomarkers for AD that are measured in 
practice for some patients are Aβ42, total tau, and phos-
phorylated tau.85 86 Immunoassays can detect species of tau 
based on site of phosphorylation, and while CSF p-tau181 
is used commonly, p-tau217 is being studied for its potential 
to be a superior biomarker for AD.50 87 88

Our lab and others are looking for early biomarkers. 
One possibility is micro(mi)RNAs, small endogenous non-
protein-coding RNAs that influence the post-transcriptional 
regulation of gene expression and are involved in many 
neuronal processes.89 90 A number of miRNAs show differ-
ential levels in the circulation and CSF in AD. These include 
miR-133b and miR-193a-3p, which are downregulated in 
AD serum and miR-206, which is elevated in AD plasma.91–93 
The predictive accuracy of any of these miRNAs has yet to 
be proven or brought into clinical use.

Not only can miRNAs serve as biomarkers but also 
they may be targets for treatment because they can affect 
signaling pathways crucial to neuronal function.94 Circu-
lating miRNAs are often carried in exosomes, small extra-
cellular vesicles shed from all cells that contain cellular 
proteins, mRNA transcripts, miRNAs and lipids from 
their cell of origin.95 They are a fundamental mechanism 
of communication in the nervous system, allowing bidirec-
tional cell signaling.96 The miRNAs within exosomes can 
transfer between neurons and microglia and can influence 
their phenotype. They can affect genes involved in Aβ 
generation.97 Extraction of exosomes that are shed from the 
neurons of the brain and central nervous system of humans 
with and without AD, may allow us to distinguish miRNAs 
from brain neurons that are altered by AD. This knowledge 
could then be used to identify signaling pathways relevant 
to nerve health and synaptic function that are modulated 
in AD and potentially to manipulate these in a beneficial 
direction to mitigate negative effects.

Our group is exploring a human cell culture model of AD 
that may circumvent or complement the need for rodents. It 
is not practical to do human brain biopsies and study brain 
cells in culture. If we could, that would be comparable to 
our approach to cancer.98 We can, however, approximate 
neurons from the brain using human induced pluripotent 
stem cells from patients clinically diagnosed with AD and 
differentiated to neural stem cells and then further differen-
tiated to human cerebral cortical neurons.28 99
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Neurons do not exist in isolation. To put a brain model 
together, multiple brain cell types, including microglia, 
are required because inflammation is undoubtedly part of 
the process of AD. With injury, the microglia proliferate 
and transform into active ‘brain macrophages’, also called 
reactive microglia. We know that amyloid and tau activate 
microglia.100 101 In our model, we are looking at neurons 
and microglia together. The level of the major synaptic 
protein synaptophysin is significantly lower in these AD-de-
rived neurons, and our unpublished results show that they 
respond differently than neurons from non-AD subjects to 
both direct exposure to high glucose and to conditioned 
medium from microglia exposed to high glucose.102

Briefly, we cultured HMC3 human microglial cells in 
normal and high-glucose conditions, then transferred 
conditioned medium from HMC3 to human-induced pleu-
ripotent stem cell-derived neurons from AD versus non-AD 
donors (Axol Biosciences) and found an increase in APP 
and low density lipoprotein receptor-related protein 1 (a 
receptor that facilitates Aβ clearance) only in AD neurons 
in the presence of high glucose (p<0.01 vs normal glucose), 
while healthy donors showed no change or reduced expres-
sion under high-glucose conditions.103 This preliminary 
work shows that immune-modulating glial-type cells influ-
ence gene expression in neuronal cells and that the AD 
neuronal cell response differs from the non-AD response. 
The AD-derived neurons may be more prone to dysfunc-
tion from compromised Aβ handling in high glucose, 
linking diabetes and AD. Disruptions in neuronal response 
to insulin, insulin signaling and glucose homeostasis may 
occur in some patients with AD, and this could be a cause 
of damage to neurons.104 105 This is an active area of 
research.106 Our study is in progress, and as we and others 
continue to look deeper into mechanisms of neurotoxicity 
in AD, breakthroughs may be on the horizon.

Conclusions
AD is a common neurodegenerative disorder that leads 
inexorably to deterioration of cognitive functions, memory 
loss and ultimately death.107 The need to develop new treat-
ments is urgent, and innovative thinking must prevail over 
repeated attempts to use the same approaches that have 
failed previously. In the interim, there are fundamental 
steps to take now: encourage patients with AD and healthy 
persons to eat a high-quality diet, engage in regular physical 
activity, increase social connections and intellectual activ-
ities, avoid head trauma and minimize heart disease risk 
factors: hypertension, obesity, high cholesterol and diabetes 
(keep A1C in normal range). These seem like very basic life-
style behaviors that apply almost universally, but so many of 
us do not put in the effort to adhere to them.

Twitter Allison Bethanne Reiss @Dr__Reiss
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