Alzheimer’s disease: many failed trials, so where do we go from here? ======================================================================= * Allison Bethanne Reiss * Amy D Glass * Thomas Wisniewski * Benjamin Wolozin * Irving H Gomolin * Aaron Pinkhasov * Joshua De Leon * Mark M Stecker ## Abstract Alzheimer’s disease (AD) is a neurodegenerative brain disorder associated with relentlessly progressive cognitive impairment and memory loss. AD pathology proceeds for decades before cognitive deficits become clinically apparent, opening a window for preventative therapy. Imbalance of clearance and buildup of amyloid β and phosphorylated tau proteins in the central nervous system is believed to contribute to AD pathogenesis. However, multiple clinical trials of treatments aimed at averting accumulation of these proteins have yielded little success, and there is still no disease-modifying intervention. Here, we discuss current knowledge of AD pathology and treatment with an emphasis on emerging biomarkers and treatment strategies. * Alzheimer's disease * plaque, amyloid * MRI * cognition * biomedical research ## Introduction Alzheimer's disease (AD) is a progressive, irreversible disabling neurodegenerative disorder characterized by memory loss, cognitive dysfunction and behavioral changes.1–3 It is the leading cause of dementia, affecting approximately 46.8 million people globally.4–6 At the molecular level, pathological changes in the brain that are hallmarks of AD include intracellular neurofibrillary tangles (NFTs) containing hyperphosphorylated tau protein and insoluble extracellular β-amyloid (Aβ) plaques.7 8 Pathological changes in the brain precede clinical symptoms and, therefore, diagnosis, by decades.9–11 The debilitating effects of AD impose an enormous social, emotional and economic burden on patients and their families.6 12 The etiology of AD remains unclear and, despite research programs costing billions of dollars and numerous successful approaches in mouse models, at this time, there are no effective treatments for AD.13–16 Mild symptomatic benefits are all that can be offered. This symposium will explore the underlying reasons for failure in developing effective drugs and will suggest possible new directions to improve prognosis for this devastating disease. ## Amyloid precursor protein (APP) processing and Aβ formation The amyloid cascade hypothesis is a widely accepted model of AD pathogenesis that postulates an imbalance between production and clearance of the Aβ peptide leading to brain deposition of Aβ as the cause of AD.17 18 Accumulation of Aβ occurs in the AD brain, and in familial forms of the disease, this is thought to be due to overproduction, whereas in most late-onset forms of the disease, it is thought to be due to insufficient clearance.19 Based on the amyloid cascade hypothesis and the presence of Aβ in the AD brain, numerous treatments have been devised to reduce Aβ load as a way to halt or slow AD progression. Despite multiple failures, the hypothesis continues to drive the development of potential AD treatments.20 21 The proteolytic processing of APP determines whether Aβ will be generated (figure 1).22 The three enzymes that control this process are α-secretase, β-secretase (β-site APP-cleaving enzyme (BACE) 1) and γ-secretase. APP can enter either an amyloidogenic or a non-amyloidogenic pathway, depending on which of these secretases act on it. The amyloidogenic pathway begins with BACE1 releasing a soluble APP fragment and leaving in the membrane a 99 amino acid C-terminal fragment (CTF-β).23 This fragment is then cleaved by γ-secretase at slightly different positions, producing Aβ1-40 and Aβ1-42, as well as a cytoplasmic peptide, the amyloid precursor protein intracellular domain (AICD). The non-amyloidogenic route starts with APP cleavage by α-secretase in the middle of the Aβ domain, freeing a soluble ectodomain (sAPP-α) and a membrane-bound C-terminal APP fragment of 83 amino acids (CTF-α). Further cleavage within the transmembrane domain by the γ-secretase complex yields the p3 peptide fragment and the AICD. ![Figure 1](/https://d3hme472k3gd2d.cloudfront.net/content/jim/68/6/1135/F1.medium.gif) [Figure 1](/content/68/6/1135/F1) Figure 1 APP processing via non-amyloidogenic and amyloidogenic pathways. The left side of the figure shows non-amyloid-forming reactions in which APP is cleaved by α-secretase to form sAPP-α, then by γ-secretase to yield P83 and AICD (amyloid intracellular domain). The right side of the figure shows amyloid-forming reactions in which APP is cleaved by BACE1 to form sAPP-β, then by γ-secretase to yield Aβ and AICD. AICD, amyloid precursor protein intracellular domain; APP, amyloid precursor protein; BACE1, β-site APP-cleaving enzyme; CTF-β, C-terminal fragment; sAPP-β, soluble APP fragment. ## Rodent models Transgenic mice overexpressing APP have been used in myriad studies and have proven to be a valuable in vivo model, contributing tremendously to our understanding of AD pathophysiology.24–29 However, there is a disconnect between efficacy of treatment in rodent models and failure when attempts are made to translate to humans. In theory, Aβ removal or interference with Aβ aggregation will improve the signs and symptoms of AD. Unfortunately, this holds true in mice, but for reasons that we have to work out, it does not yield the same improvement in people28 30–32 (box 1). Box 1 ### Problems with current strategies to develop Alzheimer’s disease (AD) treatment * Treatment success in AD animal models has not translated to humans. * Multiple attempts to use anti-amyloid antibodies by drug companies have been unsuccessful, and some have given up, rather than trying to go in another direction. * No good biomarker to predict who will develop AD. Accurate prediction allows intervention before too much neuronal loss. * No way to screen potential treatments for human efficacy other than 5 or 10 years of administering to humans or trying it on animals. * Lack of direct access to the neurons in the brain of the affected individual. * No personalized approach or precision medicine as we see for many cancers. ## Alzheimer’s pathology and imaging The AD brain is notable for the presence of senile plaques of insoluble Aβ1-40 and Aβ1-42 and NFTs of tau, a microtubule-associated protein that is normally involved in axonal transport.33 34 The plaques are composed primarily of fibrillar Aβ deposited extracellularly. Neuritic plaques, a subset of senile plaques, are most closely linked to synaptic loss, have a dense core and are found associated with dystrophic neurons and activated microglia. Tangles are intracellular and consist of paired-helical filaments of hyperphosphorylated tau protein.35 36 These pathological changes occur decades before initial clinical symptoms manifest.37 38 Aβ pathology can be imaged in human brain tissue in vivo by positron emission tomography (PET) using amyloid-β radiotracers.39 40 The use of fluorodeoxyglucose-PET has allowed documentation of decreased glucose metabolism in the AD brain, generally occurring earliest in the posteromedial cortex and also in the temporal regions and correlating with neuronal or synaptic loss.41 42 PET also allows for in vivo evaluation of tau, and this is important because it has been shown that NFTs correlate with cognitive decline in AD better than amyloid.43–45 The PET tracer fluorine 18–labeled [18F] flortaucipir (AV1451) binds to the paired helical filaments of tau in NFTs and correlates well with cerebrospinal fluid (CSF) tau content.46–48 A recent report found that older persons carrying the ApoE4 allele have greater taupathy in the medial temporal area of the brain, indicating that ApoE4 status may affect not only brain Aβ but also tau. However, the link among ApoE4, tau and AD is not established here.49 At this time, imaging for neither Aβ nor tau is currently used in routine clinical practice, and CSF measures are also not routine.50 The American College of Radiology and the American College of Neurology each recommend structural imaging, such as non-contrast MRI in the evaluation of patients suspected of having AD.51 52 Atrophy of the brain is a frequent finding on MRI in AD and correlates poorly to the degree of cognitive impairment.53 Hippocampal atrophy is a validated AD biomarker.54 In general, the pattern of progression begins with early atrophy in the superior temporal region and the hippocampus, then subsequently in the amygdala and the remaining temporal regions and even later in the frontal association cortices.55 56 Ventricular enlargement accompanies atrophy of the gyri and expanded sulci, indicating loss of both grey and white matter. As expected, a decrease in brain weight has been observed. Although imaging can show signs of incipient dementia before it becomes clinically overt, by the time imaging is abnormal, substantial neuronal loss has occurred.57 Further, progression from mild cognitive impairment to AD may be predicted with reasonable accuracy, but this does not lead to better outcome.58 ## Current and future treatment: the obstacles to success There is no disease-modifying therapy for AD at this time.15 59 Only modest symptomatic relief for between 6 and 18 months can be achieved, generally by using cholinesterase inhibitors to prevent degradation of acetylcholine and by using the glutamate receptor antagonist memantine to attenuate excitotoxicity.60 Acetylcholine is a neurotransmitter and neuromodulator that plays a critical role in forming and retrieving memories and maintaining attention. Cholinesterase inhibitors are the first-line medications in the treatment of AD. They slow the degradation of acetylcholine in the synaptic cleft, thus treating the symptoms of AD by increasing cholinergic function in the brain.61 The currently available cholinesterase inhibitors most frequently prescribed are donepezil, rivastigmine, and galantamine.62 63 Although cholinesterase inhibitors can slow symptoms of AD dementia, they do not alter the inevitable neurodegeneration and cognitive decline.64 The N-methyl-D-aspartate antagonist memantine may delay cognitive decline, although not as effectively as cholinesterase inhibitors, and can be helpful in controlling agitation.65–67 Memantine, either as part of a multidrug regimen or by itself, is most clinically beneficial in people with moderate-to-severe AD.68 Memantine and anticholinesterase therapies are often combined, but it is not clear whether these are superior to the cholinesterase inhibitor alone.69 Based on observational studies, lifestyle and health behaviors may delay or slow cognitive deterioration in AD.70 Modifiable factors that may benefit persons at risk of AD include physical activity, maintaining good nutrition, controlling blood pressure and diabetes, and pursuing social activities.71–73 Avoiding obesity and tobacco and alcohol use are all beneficial to general health and possibly as measures to postpone clinical manifestations of AD.74–76 According to the amyloid hypothesis, Aβ removal or interference with Aβ aggregation will improve the signs and symptoms of AD.77 78 Unfortunately, what is effective in mice, for reasons that are numerous and yet to be fully explained, does not translate to humans. Further, some anti-amyloid treatments have caused unacceptable side effects, such as meningoencephalitis, brain edema, and brain microhemorrhage. The many failures in clinical trials of active and passive immunotherapies to remove Aβ have led some pharmaceutical companies to close their neurology divisions and cease working on AD79 80 (table 1). View this table: [Table 1](/content/68/6/1135/T1) Table 1 AD treatments targeting Aβ and results in human trials Another impediment to designing treatments is the lack of early predictors of who will develop AD (box 1). Identification of patients with AD before they have undergone significant neurodegeneration becomes crucial if we are to preserve cognitive function.79 Current methods have limited accuracy in predicting progression to AD, and the search for better biomarkers and imaging techniques is ongoing.81–84 Currently, CSF biomarkers for AD that are measured in practice for some patients are Aβ42, total tau, and phosphorylated tau.85 86 Immunoassays can detect species of tau based on site of phosphorylation, and while CSF p-tau181 is used commonly, p-tau217 is being studied for its potential to be a superior biomarker for AD.50 87 88 Our lab and others are looking for early biomarkers. One possibility is micro(mi)RNAs, small endogenous non-protein-coding RNAs that influence the post-transcriptional regulation of gene expression and are involved in many neuronal processes.89 90 A number of miRNAs show differential levels in the circulation and CSF in AD. These include miR-133b and miR-193a-3p, which are downregulated in AD serum and miR-206, which is elevated in AD plasma.91–93 The predictive accuracy of any of these miRNAs has yet to be proven or brought into clinical use. Not only can miRNAs serve as biomarkers but also they may be targets for treatment because they can affect signaling pathways crucial to neuronal function.94 Circulating miRNAs are often carried in exosomes, small extracellular vesicles shed from all cells that contain cellular proteins, mRNA transcripts, miRNAs and lipids from their cell of origin.95 They are a fundamental mechanism of communication in the nervous system, allowing bidirectional cell signaling.96 The miRNAs within exosomes can transfer between neurons and microglia and can influence their phenotype. They can affect genes involved in Aβ generation.97 Extraction of exosomes that are shed from the neurons of the brain and central nervous system of humans with and without AD, may allow us to distinguish miRNAs from brain neurons that are altered by AD. This knowledge could then be used to identify signaling pathways relevant to nerve health and synaptic function that are modulated in AD and potentially to manipulate these in a beneficial direction to mitigate negative effects. Our group is exploring a human cell culture model of AD that may circumvent or complement the need for rodents. It is not practical to do human brain biopsies and study brain cells in culture. If we could, that would be comparable to our approach to cancer.98 We can, however, approximate neurons from the brain using human induced pluripotent stem cells from patients clinically diagnosed with AD and differentiated to neural stem cells and then further differentiated to human cerebral cortical neurons.28 99 Neurons do not exist in isolation. To put a brain model together, multiple brain cell types, including microglia, are required because inflammation is undoubtedly part of the process of AD. With injury, the microglia proliferate and transform into active ‘brain macrophages’, also called reactive microglia. We know that amyloid and tau activate microglia.100 101 In our model, we are looking at neurons and microglia together. The level of the major synaptic protein synaptophysin is significantly lower in these AD-derived neurons, and our unpublished results show that they respond differently than neurons from non-AD subjects to both direct exposure to high glucose and to conditioned medium from microglia exposed to high glucose.102 Briefly, we cultured HMC3 human microglial cells in normal and high-glucose conditions, then transferred conditioned medium from HMC3 to human-induced pleuripotent stem cell-derived neurons from AD versus non-AD donors (Axol Biosciences) and found an increase in APP and low density lipoprotein receptor-related protein 1 (a receptor that facilitates Aβ clearance) only in AD neurons in the presence of high glucose (p<0.01 vs normal glucose), while healthy donors showed no change or reduced expression under high-glucose conditions.103 This preliminary work shows that immune-modulating glial-type cells influence gene expression in neuronal cells and that the AD neuronal cell response differs from the non-AD response. The AD-derived neurons may be more prone to dysfunction from compromised Aβ handling in high glucose, linking diabetes and AD. Disruptions in neuronal response to insulin, insulin signaling and glucose homeostasis may occur in some patients with AD, and this could be a cause of damage to neurons.104 105 This is an active area of research.106 Our study is in progress, and as we and others continue to look deeper into mechanisms of neurotoxicity in AD, breakthroughs may be on the horizon. ## Conclusions AD is a common neurodegenerative disorder that leads inexorably to deterioration of cognitive functions, memory loss and ultimately death.107 The need to develop new treatments is urgent, and innovative thinking must prevail over repeated attempts to use the same approaches that have failed previously. In the interim, there are fundamental steps to take now: encourage patients with AD and healthy persons to eat a high-quality diet, engage in regular physical activity, increase social connections and intellectual activities, avoid head trauma and minimize heart disease risk factors: hypertension, obesity, high cholesterol and diabetes (keep A1C in normal range). These seem like very basic lifestyle behaviors that apply almost universally, but so many of us do not put in the effort to adhere to them. ## Acknowledgments We thank The Herb and Evelyn Abrams Family Amyloid Research Fund. We thank Mr Robert Buescher for his generous backing. We are grateful to Ms Lynn Drucker for her tireless efforts and support. ## Footnotes * Twitter @Dr__Reiss * Contributors All the authors have read and approved this article. Idea and concept: ABR, BW and MMS. Drafting of the manuscript: ABR, AP, IHG and TW. Critical intellectual contribution, figure drawing and manuscript editing: ADG and JDL. * Funding This work was supported by The Alzheimer's Foundation of America Award (AWD00004772). * Competing interests None declared. * Patient consent for publication Not required. * Provenance and peer review Commissioned; externally peer reviewed. * Data availability statement Brief summary data are preliminary and available upon request. ## References 1. Wisniewski T . Alzheimer's disease. 1st ed. Brisbane, Australia: Codon Publications, 2019. 2. Huang Y , Mucke L . Alzheimer mechanisms and therapeutic strategies. Cell 2012;148:1204–22.[doi:10.1016/j.cell.2012.02.040](http://dx.doi.org/10.1016/j.cell.2012.02.040) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22424230 [CrossRef](/lookup/external-ref?access_num=10.1016/j.cell.2012.02.040&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22424230&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000301889500017&link_type=ISI) 3. Rabinovici GD . Late-Onset Alzheimer disease. Continuum 2019;25:14–33.[doi:10.1212/CON.0000000000000700](http://dx.doi.org/10.1212/CON.0000000000000700) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30707185 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 4. Du X , Wang X , Geng M . Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 2018;7:2. [doi:10.1186/s40035-018-0107-y](http://dx.doi.org/10.1186/s40035-018-0107-y) 5. Lopez OL , Kuller LH . Epidemiology of aging and associated cognitive disorders: prevalence and incidence of Alzheimer's disease and other dementias. Handb Clin Neurol 2019;167:139–48.[doi:10.1016/B978-0-12-804766-8.00009-1](http://dx.doi.org/10.1016/B978-0-12-804766-8.00009-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31753130 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 6. Alzheimer's Association. 2020 Alzheimer's disease facts and figures. Alzheimers Dement 2020;15:321–87.[doi:10.1002/alz.12068](http://dx.doi.org/10.1002/alz.12068) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32157811 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 7. Hardy J . A hundred years of Alzheimer's disease research. Neuron 2006;52:3–13.[doi:10.1016/j.neuron.2006.09.016](http://dx.doi.org/10.1016/j.neuron.2006.09.016) [CrossRef](/lookup/external-ref?access_num=10.1016/j.neuron.2006.09.016&link_type=DOI) [PubMed](/lookup/external-ref?access_num=17015223&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 8. Ingelsson M , Fukumoto H , Newell KL , et al . Early A accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004;62:925–31.[doi:10.1212/01.WNL.0000115115.98960.37](http://dx.doi.org/10.1212/01.WNL.0000115115.98960.37) [CrossRef](/lookup/external-ref?access_num=10.1212/01.WNL.0000115115.98960.37&link_type=DOI) [PubMed](/lookup/external-ref?access_num=15037694&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 9. Villemagne VL , Burnham S , Bourgeat P , et al . Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol 2013;12:357–67.[doi:10.1016/S1474-4422(13)70044-9](http://dx.doi.org/10.1016/S1474-4422(13)70044-9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23477989 [CrossRef](/lookup/external-ref?access_num=10.1016/S1474-4422(13)70044-9&link_type=DOI) [PubMed](/lookup/external-ref?access_num=23477989&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 10. Dubois B , Hampel H , Feldman HH , et al . Preclinical Alzheimer's disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 2016;12:292–323.[doi:10.1016/j.jalz.2016.02.002](http://dx.doi.org/10.1016/j.jalz.2016.02.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27012484 [CrossRef](/lookup/external-ref?access_num=10.1016/j.jalz.2016.02.002&link_type=DOI) [PubMed](/lookup/external-ref?access_num=27012484&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 11. Pletnikova O , Kageyama Y , Rudow G , et al . The spectrum of preclinical Alzheimer's disease pathology and its modulation by APOE genotype. Neurobiol Aging 2018;71:72–80.[doi:10.1016/j.neurobiolaging.2018.07.007](http://dx.doi.org/10.1016/j.neurobiolaging.2018.07.007) 12. Wimo A , Winblad B , Jönsson L . The worldwide societal costs of dementia: estimates for 2009. Alzheimers Dement 2010;6:98–103.[doi:10.1016/j.jalz.2010.01.010](http://dx.doi.org/10.1016/j.jalz.2010.01.010) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20298969 [CrossRef](/lookup/external-ref?access_num=10.1016/j.jalz.2010.01.010&link_type=DOI) [PubMed](/lookup/external-ref?access_num=20298969&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000276576400002&link_type=ISI) 13. Scheltens P , Blennow K , Breteler MMB , et al . Alzheimer's disease. Lancet 2016;388:505–17.[doi:10.1016/S0140-6736(15)01124-1](http://dx.doi.org/10.1016/S0140-6736(15)01124-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26921134 [CrossRef](/lookup/external-ref?access_num=10.1016/S0140-6736(15)01124-1&link_type=DOI) [PubMed](/lookup/external-ref?access_num=26921134&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 14. Cummings J , Lee G , Ritter A , et al . Alzheimer's disease drug development pipeline: 2019. Alzheimers Dement 2019;5:272–93.[doi:10.1016/j.trci.2019.05.008](http://dx.doi.org/10.1016/j.trci.2019.05.008) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31334330 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 15. Wisniewski T , Drummond E . Future horizons in Alzheimer's disease research. Prog Mol Biol Transl Sci 2019;168:223–41.[doi:10.1016/bs.pmbts.2019.08.001](http://dx.doi.org/10.1016/bs.pmbts.2019.08.001) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31699317 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 16. Herline K , Drummond E , Wisniewski T . Recent advancements toward therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 2018;17:707–21.[doi:10.1080/14760584.2018.1500905](http://dx.doi.org/10.1080/14760584.2018.1500905) 17. Hardy J , Selkoe DJ . The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297:353–6.[doi:10.1126/science.1072994](http://dx.doi.org/10.1126/science.1072994) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12130773 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIyOTcvNTU4MC8zNTMiO3M6NDoiYXRvbSI7czoxOToiL2ppbS82OC82LzExMzUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 18. Selkoe DJ , Hardy J . The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016;8:595–608.[doi:10.15252/emmm.201606210](http://dx.doi.org/10.15252/emmm.201606210) [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZW1ib21tIjtzOjU6InJlc2lkIjtzOjc6IjgvNi81OTUiO3M6NDoiYXRvbSI7czoxOToiL2ppbS82OC82LzExMzUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 19. Potter R , Patterson BW , Elbert DL , et al . Increased in Vivo Amyloid-β42 Production, Exchange, and Loss in Presenilin Mutation Carriers. Sci Transl Med 2013;5:189ra77. [doi:10.1126/scitranslmed.3005615](http://dx.doi.org/10.1126/scitranslmed.3005615) 20. Reiss AB , Arain HA , Stecker MM , et al . Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 2018;29:613–27.[doi:10.1515/revneuro-2017-0063](http://dx.doi.org/10.1515/revneuro-2017-0063) 21. Tolar M , Abushakra S , Sabbagh M . The path forward in Alzheimer's disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimers Dement 2020. doi:[doi:10.1016/j.jalz.2019.09.075](http://dx.doi.org/10.1016/j.jalz.2019.09.075). [Epub ahead of print: 03 Jan 2020].pmid:http://www.ncbi.nlm.nih.gov/pubmed/31706733 22. Zhang Y-wu , Thompson R , Zhang H , et al . App processing in Alzheimer's disease. Mol Brain 2011;4:3. [doi:10.1186/1756-6606-4-3](http://dx.doi.org/10.1186/1756-6606-4-3) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21214928 [CrossRef](/lookup/external-ref?access_num=10.1186/1756-6606-4-3&link_type=DOI) [PubMed](/lookup/external-ref?access_num=21214928&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 23. Hussain I , Powell D , Howlett DR , et al . Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 1999;14:419–27.[doi:10.1006/mcne.1999.0811](http://dx.doi.org/10.1006/mcne.1999.0811) pmid:http://www.ncbi.nlm.nih.gov/pubmed/10656250 [CrossRef](/lookup/external-ref?access_num=10.1006/mcne.1999.0811&link_type=DOI) [PubMed](/lookup/external-ref?access_num=10656250&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000084490600001&link_type=ISI) 24. Rivera-Escalera F , Pinney JJ , Owlett L , et al . IL-1β-driven amyloid plaque clearance is associated with an expansion of transcriptionally reprogrammed microglia. J Neuroinflammation 2019;16:261. [doi:10.1186/s12974-019-1645-7](http://dx.doi.org/10.1186/s12974-019-1645-7) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31822279 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 25. Chakroborty S , Kim J , Schneider C , et al . Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer's disease mice. J Neurosci 2012;32:8341–53.[doi:10.1523/JNEUROSCI.0936-12.2012](http://dx.doi.org/10.1523/JNEUROSCI.0936-12.2012) [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIzMi8yNC84MzQxIjtzOjQ6ImF0b20iO3M6MTk6Ii9qaW0vNjgvNi8xMTM1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 26. Dineley KT , Westerman M , Bui D , et al . Beta-Amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci 2001;21:4125–33.[doi:10.1523/JNEUROSCI.21-12-04125.2001](http://dx.doi.org/10.1523/JNEUROSCI.21-12-04125.2001) pmid:http://www.ncbi.nlm.nih.gov/pubmed/11404397 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIyMS8xMi80MTI1IjtzOjQ6ImF0b20iO3M6MTk6Ii9qaW0vNjgvNi8xMTM1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 27. Radde R , Bolmont T , Kaeser SA , et al . Aβ42‐driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 2006;7:940–6.[doi:10.1038/sj.embor.7400784](http://dx.doi.org/10.1038/sj.embor.7400784) [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiZW1ib3IiO3M6NToicmVzaWQiO3M6NzoiNy85Lzk0MCI7czo0OiJhdG9tIjtzOjE5OiIvamltLzY4LzYvMTEzNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 28. Drummond E , Wisniewski T . Alzheimer’s disease: experimental models and reality. Acta Neuropathol 2017;133:155–75.[doi:10.1007/s00401-016-1662-x](http://dx.doi.org/10.1007/s00401-016-1662-x) [CrossRef](/lookup/external-ref?access_num=10.1007/s00401-016-1662-x&link_type=DOI) 29. Devinsky O , Boesch JM , Cerda-Gonzalez S , et al . A cross-species approach to disorders affecting brain and behaviour. Nat Rev Neurol 2018;14:677–86.[doi:10.1038/s41582-018-0074-z](http://dx.doi.org/10.1038/s41582-018-0074-z) 30. Lemere CA , Maron R , Spooner ET , et al . Nasal Aβ treatment induces anti-Aβ antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann N Y Acad Sci 2000;920:328–31.[doi:10.1111/j.1749-6632.2000.tb06943.x](http://dx.doi.org/10.1111/j.1749-6632.2000.tb06943.x) [CrossRef](/lookup/external-ref?access_num=10.1111/j.1749-6632.2000.tb06943.x&link_type=DOI) [PubMed](/lookup/external-ref?access_num=11193172&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000171939600046&link_type=ISI) 31. King A . The search for better animal models of Alzheimer’s disease. Nature 2018;559:S13–15.[doi:10.1038/d41586-018-05722-9](http://dx.doi.org/10.1038/d41586-018-05722-9) 32. Jankowsky JL , Zheng H . Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener 2017;12:89. [doi:10.1186/s13024-017-0231-7](http://dx.doi.org/10.1186/s13024-017-0231-7) 33. Glenner GG , Wong CW . Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885–90.[doi:10.1016/S0006-291X(84)80190-4](http://dx.doi.org/10.1016/S0006-291X(84)80190-4) [CrossRef](/lookup/external-ref?access_num=10.1016/S0006-291X(84)80190-4&link_type=DOI) [PubMed](/lookup/external-ref?access_num=6375662&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=A1984SS90300026&link_type=ISI) 34. Kosik KS , Joachim CL , Selkoe DJ . Microtubule-Associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 1986;83:4044–8.[doi:10.1073/pnas.83.11.4044](http://dx.doi.org/10.1073/pnas.83.11.4044) [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiODMvMTEvNDA0NCI7czo0OiJhdG9tIjtzOjE5OiIvamltLzY4LzYvMTEzNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 35. Thal DR , Rüb U , Orantes M , et al . Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002;58:1791–800.[doi:10.1212/WNL.58.12.1791](http://dx.doi.org/10.1212/WNL.58.12.1791) [CrossRef](/lookup/external-ref?access_num=10.1212/WNL.58.12.1791&link_type=DOI) [PubMed](/lookup/external-ref?access_num=12084879&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 36. Braak H , Alafuzoff I , Arzberger T , et al . Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006;112:389–404.[doi:10.1007/s00401-006-0127-z](http://dx.doi.org/10.1007/s00401-006-0127-z) [CrossRef](/lookup/external-ref?access_num=10.1007/s00401-006-0127-z&link_type=DOI) [PubMed](/lookup/external-ref?access_num=16906426&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000240894600001&link_type=ISI) 37. Mintun MA , Larossa GN , Sheline YI , et al . [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006;67:446–52.[doi:10.1212/01.wnl.0000228230.26044.a4](http://dx.doi.org/10.1212/01.wnl.0000228230.26044.a4) pmid:http://www.ncbi.nlm.nih.gov/pubmed/16894106 [CrossRef](/lookup/external-ref?access_num=10.1212/01.wnl.0000228230.26044.a4&link_type=DOI) [PubMed](/lookup/external-ref?access_num=16894106&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 38. Buchhave P , Minthon L , Zetterberg H , et al . Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 2012;69:98–106.[doi:10.1001/archgenpsychiatry.2011.155](http://dx.doi.org/10.1001/archgenpsychiatry.2011.155) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22213792 [CrossRef](/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2011.155&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22213792&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000298675700012&link_type=ISI) 39. Sabri O , Sabbagh MN , Seibyl J , et al . Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: phase 3 study. Alzheimers Dement 2015;11:964–74.[doi:10.1016/j.jalz.2015.02.004](http://dx.doi.org/10.1016/j.jalz.2015.02.004) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25824567 [CrossRef](/lookup/external-ref?access_num=10.1016/j.jalz.2015.02.004&link_type=DOI) [PubMed](/lookup/external-ref?access_num=25824567&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 40. Curtis C , Gamez JE , Singh U , et al . Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 2015;72:287–94.[doi:10.1001/jamaneurol.2014.4144](http://dx.doi.org/10.1001/jamaneurol.2014.4144) 41. Shepherd TM , Nayak GK . Clinical use of integrated positron emission Tomography-Magnetic resonance imaging for dementia patients. Top Magn Reson Imaging 2019;28:299–310.[doi:10.1097/RMR.0000000000000225](http://dx.doi.org/10.1097/RMR.0000000000000225) 42. Jagust W , Reed B , Mungas D , et al . What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 2007;69:871–7.[doi:10.1212/01.wnl.0000269790.05105.16](http://dx.doi.org/10.1212/01.wnl.0000269790.05105.16) [CrossRef](/lookup/external-ref?access_num=10.1212/01.wnl.0000269790.05105.16&link_type=DOI) [PubMed](/lookup/external-ref?access_num=17724289&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 43. Fyfe I . Imaging shows predictive power of tau pathology in Alzheimer disease. Nat Rev Neurol 2020;16:129. [doi:10.1038/s41582-020-0326-6](http://dx.doi.org/10.1038/s41582-020-0326-6) 44. La Joie R , Visani AV , Baker SL , et al . Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med 2020;12:eaau5732. [doi:10.1126/scitranslmed.aau5732](http://dx.doi.org/10.1126/scitranslmed.aau5732) 45. Nelson PT , Alafuzoff I , Bigio EH , et al . Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012;71:362–81.[doi:10.1097/NEN.0b013e31825018f7](http://dx.doi.org/10.1097/NEN.0b013e31825018f7) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22487856 [CrossRef](/lookup/external-ref?access_num=10.1097/NEN.0b013e31825018f7&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22487856&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 46. Lowe VJ , Curran G , Fang P , et al . An autoradiographic evaluation of AV-1451 tau PET in dementia. Acta Neuropathol Commun 2016;4:58.[doi:10.1186/s40478-016-0315-6](http://dx.doi.org/10.1186/s40478-016-0315-6) 47. Meyer P-F , Pichet Binette A , Gonneaud J , et al . Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography. JAMA Neurol 2020;77:508. [doi:10.1001/jamaneurol.2019.4749](http://dx.doi.org/10.1001/jamaneurol.2019.4749) 48. Mattsson N , Schöll M , Strandberg O , et al . 18F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer's disease. EMBO Mol Med 2017;9:1212–23.[doi:10.15252/emmm.201707809](http://dx.doi.org/10.15252/emmm.201707809) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28743782 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZW1ib21tIjtzOjU6InJlc2lkIjtzOjg6IjkvOS8xMjEyIjtzOjQ6ImF0b20iO3M6MTk6Ii9qaW0vNjgvNi8xMTM1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 49. Therriault J , Benedet AL , Pascoal TA , et al . Association of apolipoprotein E ε4 with medial temporal tau independent of amyloid-β. JAMA Neurol 2020;77:470–9.[doi:10.1001/jamaneurol.2019.4421](http://dx.doi.org/10.1001/jamaneurol.2019.4421) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31860000 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 50. Jack CR , Bennett DA , Blennow K , et al . NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018;14:535–62.[doi:10.1016/j.jalz.2018.02.018](http://dx.doi.org/10.1016/j.jalz.2018.02.018) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29653606 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 51. Wippold FJ , Brown DC , Broderick DF , et al . ACR appropriateness criteria dementia and movement disorders. J Am Coll Radiol 2015;12:19–28.[doi:10.1016/j.jacr.2014.09.025](http://dx.doi.org/10.1016/j.jacr.2014.09.025) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25557568 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 52. Knopman DS , DeKosky ST , Cummings JL , et al . Practice parameter: diagnosis of dementia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56:1143–53.[doi:10.1212/WNL.56.9.1143](http://dx.doi.org/10.1212/WNL.56.9.1143) [CrossRef](/lookup/external-ref?access_num=10.1212/WNL.56.9.1143&link_type=DOI) [PubMed](/lookup/external-ref?access_num=11342678&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 53. Lombardi G , Crescioli G , Cavedo E , et al . Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. Cochrane Database Syst Rev 2020;3:CD009628. [doi:10.1002/14651858.CD009628.pub2](http://dx.doi.org/10.1002/14651858.CD009628.pub2) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32119112 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 54. Pini L , Pievani M , Bocchetta M , et al . Brain atrophy in Alzheimer’s Disease and aging. Ageing Res Rev 2016;30:25–48.[doi:10.1016/j.arr.2016.01.002](http://dx.doi.org/10.1016/j.arr.2016.01.002) 55. Apostolova LG , Green AE , Babakchanian S , et al . Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease. Alzheimer Dis Assoc Disord 2012;26:17–27.[doi:10.1097/WAD.0b013e3182163b62](http://dx.doi.org/10.1097/WAD.0b013e3182163b62) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22343374 [CrossRef](/lookup/external-ref?access_num=10.1097/WAD.0b013e3182163b62&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22343374&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 56. Rusinek H , De Santi S , Frid D , et al . Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 2003;229:691–6.[doi:10.1148/radiol.2293021299](http://dx.doi.org/10.1148/radiol.2293021299) pmid:http://www.ncbi.nlm.nih.gov/pubmed/14657306 [CrossRef](/lookup/external-ref?access_num=10.1148/radiol.2293021299&link_type=DOI) [PubMed](/lookup/external-ref?access_num=14657306&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000186717700012&link_type=ISI) 57. Frisoni GB , Bocchetta M , Chételat G , et al . Imaging markers for Alzheimer disease: which vs how. Neurology 2013;81:487–500.[doi:10.1212/WNL.0b013e31829d86e8](http://dx.doi.org/10.1212/WNL.0b013e31829d86e8) [CrossRef](/lookup/external-ref?access_num=10.1212/WNL.0b013e31829d86e8&link_type=DOI) [PubMed](/lookup/external-ref?access_num=23897875&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 58. Jang H , Park J , Woo S , et al . Prediction of fast decline in amyloid positive mild cognitive impairment patients using multimodal biomarkers. Neuroimage 2019;24:101941. [doi:10.1016/j.nicl.2019.101941](http://dx.doi.org/10.1016/j.nicl.2019.101941) 59. Imbimbo BP , Watling M . Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 2019;28:967–75.[doi:10.1080/13543784.2019.1683160](http://dx.doi.org/10.1080/13543784.2019.1683160) 60. Joe E , Ringman JM . Cognitive symptoms of Alzheimer's disease: clinical management and prevention. BMJ 2019;367:l6217. [doi:10.1136/bmj.l6217](http://dx.doi.org/10.1136/bmj.l6217) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31810978 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNjcvZGVjMDZfNy9sNjIxNyI7czo0OiJhdG9tIjtzOjE5OiIvamltLzY4LzYvMTEzNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 61. Kabir MT , Uddin MS , Begum MM , et al . Cholinesterase inhibitors for Alzheimer's disease: multitargeting strategy based on anti-Alzheimer's drugs repositioning. Curr Pharm Des 2019;25:3519–35.[doi:10.2174/1381612825666191008103141](http://dx.doi.org/10.2174/1381612825666191008103141) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31593530 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 62. Darreh-Shori T , Soininen H . Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Curr Alzheimer Res 2010;7:67–73.[doi:10.2174/156720510790274455](http://dx.doi.org/10.2174/156720510790274455) [CrossRef](/lookup/external-ref?access_num=10.2174/156720510790274455&link_type=DOI) [PubMed](/lookup/external-ref?access_num=20205672&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 63. Y.Y. Szeto J , J.G. Lewis S . Current treatment options for Alzheimer's disease and Parkinson's disease dementia. Curr Neuropharmacol 2016;14:326–38.[doi:10.2174/1570159X14666151208112754](http://dx.doi.org/10.2174/1570159X14666151208112754) [PubMed](/lookup/external-ref?access_num=26644155&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 64. Arvanitakis Z , Shah RC , Bennett DA . Diagnosis and management of dementia: review. JAMA 2019;322:1589–99.[doi:10.1001/jama.2019.4782](http://dx.doi.org/10.1001/jama.2019.4782) 65. Bond M , Rogers G , Peters J , et al . The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of technology appraisal No. 111): a systematic review and economic model. Health Technol Assess 2012;16:1–470.[doi:10.3310/hta16210](http://dx.doi.org/10.3310/hta16210) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22541366 [CrossRef](/lookup/external-ref?access_num=10.3310/hta16150&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22935084&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 66. Knight R , Khondoker M , Magill N , et al . A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord 2018;45:131–51.[doi:10.1159/000486546](http://dx.doi.org/10.1159/000486546) [CrossRef](/lookup/external-ref?access_num=10.1159/000486546&link_type=DOI) [PubMed](/lookup/external-ref?access_num=29734182&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 67. McShane R , Westby MJ , Roberts E , et al . Memantine for dementia. Cochrane Database Syst Rev 2019;3:CD003154.[doi:10.1002/14651858.CD003154.pub6](http://dx.doi.org/10.1002/14651858.CD003154.pub6) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30891742 [PubMed](/lookup/external-ref?access_num=30891742&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 68. Cui C-C , Sun Y , Wang X-Y , et al . The effect of anti-dementia drugs on Alzheimer disease-induced cognitive impairment. Medicine 2019;98:e16091. [doi:10.1097/MD.0000000000016091](http://dx.doi.org/10.1097/MD.0000000000016091) 69. Glinz D , Gloy VL , Monsch AU , et al . Acetylcholinesterase inhibitors combined with memantine for moderate to severe Alzheimer's disease: a meta-analysis. Swiss Med Wkly 2019;149:w20093. [doi:10.4414/smw.2019.20093](http://dx.doi.org/10.4414/smw.2019.20093) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31269225 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 70. Laver K , Dyer S , Whitehead C , et al . Interventions to delay functional decline in people with dementia: a systematic review of systematic reviews. BMJ Open 2016;6:e010767. [doi:10.1136/bmjopen-2015-010767](http://dx.doi.org/10.1136/bmjopen-2015-010767) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27121704 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMToiNi80L2UwMTA3NjciO3M6NDoiYXRvbSI7czoxOToiL2ppbS82OC82LzExMzUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 71. Brasure M , Desai P , Davila H , et al . Physical activity interventions in preventing cognitive decline and Alzheimer-type dementia. Ann Intern Med 2018;168:30–8.[doi:10.7326/M17-1528](http://dx.doi.org/10.7326/M17-1528) [CrossRef](/lookup/external-ref?access_num=10.7326/M17-1528&link_type=DOI) [PubMed](/lookup/external-ref?access_num=29255839&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 72. Cheng G , Huang C , Deng H , et al . Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 2012;42:484–91.[doi:10.1111/j.1445-5994.2012.02758.x](http://dx.doi.org/10.1111/j.1445-5994.2012.02758.x) [CrossRef](/lookup/external-ref?access_num=10.1111/j.1445-5994.2012.02758.x&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22372522&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 73. Marioni RE , Proust-Lima C , Amieva H , et al . Social activity, cognitive decline and dementia risk: a 20-year prospective cohort study. BMC Public Health 2015;15:1089. [doi:10.1186/s12889-015-2426-6](http://dx.doi.org/10.1186/s12889-015-2426-6) 74. Li X-Y , Zhang M , Xu W , et al . Midlife modifiable risk factors for dementia: a systematic review and meta-analysis of 34 prospective cohort studies. Curr Alzheimer Res 2019;16:1254–68.[doi:10.2174/1567205017666200103111253](http://dx.doi.org/10.2174/1567205017666200103111253) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31902364 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 75. Batty GD , Shipley MJ , Kvaavik E , et al . Biomarker assessment of tobacco smoking exposure and risk of dementia death: pooling of individual participant data from 14 cohort studies. J Epidemiol Community Health 2018;72:513–5.[doi:10.1136/jech-2017-209922](http://dx.doi.org/10.1136/jech-2017-209922) [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiamVjaCI7czo1OiJyZXNpZCI7czo4OiI3Mi82LzUxMyI7czo0OiJhdG9tIjtzOjE5OiIvamltLzY4LzYvMTEzNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 76. Kim JW , Lee DY , Lee BC , et al . Alcohol and cognition in the elderly: a review. Psychiatry Investig 2012;9:8–16.[doi:10.4306/pi.2012.9.1.8](http://dx.doi.org/10.4306/pi.2012.9.1.8) [CrossRef](/lookup/external-ref?access_num=10.4306/pi.2012.9.1.8&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22396679&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000302041500002&link_type=ISI) 77. Polanco JC , Li C , Bodea L-G , et al . Amyloid-β and tau complexity - towards improved biomarkers and targeted therapies. Nat Rev Neurol 2018;14:22–39.[doi:10.1038/nrneurol.2017.162](http://dx.doi.org/10.1038/nrneurol.2017.162) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29242522 [CrossRef](/lookup/external-ref?access_num=10.1038/nrneurol.2017.162&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 78. Mullane K , Williams M . Preclinical models of Alzheimer's disease: relevance and translational validity. Curr Protoc Pharmacol 2019;84:e57. [doi:10.1002/cpph.57](http://dx.doi.org/10.1002/cpph.57) 79. Huang L-K , Chao S-P , Hu C-J . Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020;27:18. [doi:10.1186/s12929-019-0609-7](http://dx.doi.org/10.1186/s12929-019-0609-7) 80. Doggrell SA . Lessons that can be learnt from the failure of verubecestat in Alzheimer’s disease. Expert Opin Pharmacother 2019;20:2095–9.[doi:10.1080/14656566.2019.1654998](http://dx.doi.org/10.1080/14656566.2019.1654998) 81. Tripathi M , Tripathi M , Parida G , et al . Biomarker-Based prediction of progression to dementia: F-18 FDG-PET in amnestic MCI. Neurol India 2019;67:1310–7.[doi:10.4103/0028-3886.271245](http://dx.doi.org/10.4103/0028-3886.271245) 82. Gupta Y , Lama RK , Kwon G-R , et al . Prediction and classification of Alzheimer's disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, Mr, and FDG-PET imaging biomarkers. Front Comput Neurosci 2019;13:72. [doi:10.3389/fncom.2019.00072](http://dx.doi.org/10.3389/fncom.2019.00072) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31680923 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 83. Bawa KK , Krance SH , Herrmann N , et al . A peripheral neutrophil-related inflammatory factor predicts a decline in executive function in mild Alzheimer’s disease. J Neuroinflammation 2020;17:84. [doi:10.1186/s12974-020-01750-3](http://dx.doi.org/10.1186/s12974-020-01750-3) 84. Guan J , Wang P , Lu L , et al . Association of Plasma Transferrin With Cognitive Decline in Patients With Mild Cognitive Impairment and Alzheimer’s Disease. Front Aging Neurosci 2020;12:38. [doi:10.3389/fnagi.2020.00038](http://dx.doi.org/10.3389/fnagi.2020.00038) 85. Frisoni GB , Boccardi M , Barkhof F , et al . Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers. Lancet Neurol 2017;16:661–76.[doi:10.1016/S1474-4422(17)30159-X](http://dx.doi.org/10.1016/S1474-4422(17)30159-X) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28721928 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 86. Mattsson N , Lönneborg A , Boccardi M , et al . Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017;52:196–213.[doi:10.1016/j.neurobiolaging.2016.02.034](http://dx.doi.org/10.1016/j.neurobiolaging.2016.02.034) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28317649 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 87. Santangelo R , Dell'Edera A , Sala A , et al . The CSF p-tau181/Aβ42 Ratio Offers a Good Accuracy “In Vivo” in the Differential Diagnosis of Alzheimer’s Dementia. Curr Alzheimer Res 2019;16:587–95.[doi:10.2174/1567205016666190725150836](http://dx.doi.org/10.2174/1567205016666190725150836) 88. Janelidze S , Stomrud E , Smith R , et al . Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat Commun 2020;11:1683. [doi:10.1038/s41467-020-15436-0](http://dx.doi.org/10.1038/s41467-020-15436-0) 89. Takousis P , Sadlon A , Schulz J , et al . Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimers Dement 2019;15:1468–77.[doi:10.1016/j.jalz.2019.06.4952](http://dx.doi.org/10.1016/j.jalz.2019.06.4952) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31495604 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 90. Herrera-Espejo S , Santos-Zorrozua B , Álvarez-González P , et al . A systematic review of microRNA expression as biomarker of late-onset Alzheimer's disease. Mol Neurobiol 2019;56:8376–91.[doi:10.1007/s12035-019-01676-9](http://dx.doi.org/10.1007/s12035-019-01676-9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31240600 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 91. Yang Q , Zhao Q , Yin Y . miR-133B is a potential diagnostic biomarker for Alzheimer's disease and has a neuroprotective role. Exp Ther Med 2019;18:2711–8.[doi:10.3892/etm.2019.7855](http://dx.doi.org/10.3892/etm.2019.7855) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31572518 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 92. Kenny A , McArdle H , Calero M , et al . Elevated plasma microRNA-206 levels predict cognitive decline and progression to dementia from mild cognitive impairment. Biomolecules 2019;9:E734. [doi:10.3390/biom9110734](http://dx.doi.org/10.3390/biom9110734) 93. Cao F , Liu Z , Sun G . Diagnostic value of miR-193a-3p in Alzheimer's disease and miR-193a-3p attenuates amyloid-β induced neurotoxicity by targeting PTEN. Exp Gerontol 2020;130:110814. [doi:10.1016/j.exger.2019.110814](http://dx.doi.org/10.1016/j.exger.2019.110814) 94. Dehghani R , Rahmani F , Rezaei N . Microrna in Alzheimer's disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 2018;29:161–82.[doi:10.1515/revneuro-2017-0042](http://dx.doi.org/10.1515/revneuro-2017-0042) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28941357 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 95. D'Anca M , Fenoglio C , Serpente M , et al . Exosome determinants of physiological aging and age-related neurodegenerative diseases. Front Aging Neurosci 2019;11:232. [doi:10.3389/fnagi.2019.00232](http://dx.doi.org/10.3389/fnagi.2019.00232) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31555123 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 96. Szepesi Z , Manouchehrian O , Bachiller S , et al . Bidirectional Microglia-Neuron communication in health and disease. Front Cell Neurosci 2018;12:323. [doi:10.3389/fncel.2018.00323](http://dx.doi.org/10.3389/fncel.2018.00323) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30319362 [CrossRef](/lookup/external-ref?access_num=10.3389/fncel.2018.00323&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 97. Mathews PM , Levy E . Exosome production is key to neuronal endosomal pathway integrity in neurodegenerative diseases. Front Neurosci 2019;13:1347. [doi:10.3389/fnins.2019.01347](http://dx.doi.org/10.3389/fnins.2019.01347) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31911768 [CrossRef](/lookup/external-ref?access_num=10.3389/fnins.2019.01347&link_type=DOI) [PubMed](/lookup/external-ref?access_num=31911768&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 98. Malone ER , Oliva M , Sabatini PJB , et al . Molecular profiling for precision cancer therapies. Genome Med 2020;12:8. [doi:10.1186/s13073-019-0703-1](http://dx.doi.org/10.1186/s13073-019-0703-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31937368 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 99. Penney J , Ralvenius WT , Tsai L-H . Modeling Alzheimer's disease with iPSC-derived brain cells. Mol Psychiatry 2020;25:148–67.[doi:10.1038/s41380-019-0468-3](http://dx.doi.org/10.1038/s41380-019-0468-3) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31391546 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 100. Sarlus H , Heneka MT . Microglia in Alzheimer's disease. J Clin Invest 2017;127:3240–9.[doi:10.1172/JCI90606](http://dx.doi.org/10.1172/JCI90606) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28862638 [CrossRef](/lookup/external-ref?access_num=10.1172/JCI90606&link_type=DOI) [PubMed](/lookup/external-ref?access_num=28862638&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 101. Pampuscenko K , Morkuniene R , Sneideris T , et al . Extracellular tau induces microglial phagocytosis of living neurons in cell cultures. J Neurochem 2019:e14940. [doi:10.1111/jnc.14940](http://dx.doi.org/10.1111/jnc.14940) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31834946 102. Tannenberg RK , Scott HL , Westphalen RI , et al . The identification and characterization of excitotoxic nerve-endings in Alzheimer disease. Curr Alzheimer Res 2004;1:11–25.[doi:10.2174/1567205043480591](http://dx.doi.org/10.2174/1567205043480591) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15975081 [CrossRef](/lookup/external-ref?access_num=10.2174/1567205043480591&link_type=DOI) [PubMed](/lookup/external-ref?access_num=15975081&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000207883200003&link_type=ISI) 103. Shinohara M , Tachibana M , Kanekiyo T , et al . Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017;58:1267–81.[doi:10.1194/jlr.R075796](http://dx.doi.org/10.1194/jlr.R075796) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28381441 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamxyIjtzOjU6InJlc2lkIjtzOjk6IjU4LzcvMTI2NyI7czo0OiJhdG9tIjtzOjE5OiIvamltLzY4LzYvMTEzNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 104. de la Monte SM . Type 3 diabetes is sporadic Alzheimer׳s disease: mini-review. Eur Neuropsychopharmacol 2014;24:1954–60.[doi:10.1016/j.euroneuro.2014.06.008](http://dx.doi.org/10.1016/j.euroneuro.2014.06.008) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25088942 [CrossRef](/lookup/external-ref?access_num=10.1016/j.euroneuro.2014.06.008&link_type=DOI) [PubMed](/lookup/external-ref?access_num=25088942&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 105. Aljanabi NM , Mamtani S , Al-Ghuraibawi MMH , et al . Alzheimer's and hyperglycemia: role of the insulin signaling pathway and GSK-3 inhibition in paving a path to dementia. Cureus 2020;12:e6885. [doi:10.7759/cureus.6885](http://dx.doi.org/10.7759/cureus.6885) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32190448 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 106. Dubey SK , Lakshmi KK , Krishna KV , et al . Insulin mediated novel therapies for the treatment of Alzheimer's disease. Life Sci 2020;249:117540. [doi:10.1016/j.lfs.2020.117540](http://dx.doi.org/10.1016/j.lfs.2020.117540) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32165212 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 107. Reiss AB , Voloshyna I . Regulation of cerebral cholesterol metabolism in Alzheimer disease. J Investig Med 2012;60:576–82.[doi:10.2310/JIM.0b013e318246d973](http://dx.doi.org/10.2310/JIM.0b013e318246d973) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22367100 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamltIjtzOjU6InJlc2lkIjtzOjg6IjYwLzMvNTc2IjtzOjQ6ImF0b20iO3M6MTk6Ii9qaW0vNjgvNi8xMTM1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 108. Schneider L . A resurrection of aducanumab for Alzheimer's disease. Lancet Neurol 2020;19:111–2.[doi:10.1016/S1474-4422(19)30480-6](http://dx.doi.org/10.1016/S1474-4422(19)30480-6) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31978357 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 109. Yoshida K , Moein A , Bittner T , et al . Pharmacokinetics and pharmacodynamic effect of crenezumab on plasma and cerebrospinal fluid beta-amyloid in patients with mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 2020;12:16.[doi:10.1186/s13195-020-0580-2](http://dx.doi.org/10.1186/s13195-020-0580-2) 110. Salloway S , Sperling R , Fox NC , et al . Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med 2014;370:322–33.[doi:10.1056/NEJMoa1304839](http://dx.doi.org/10.1056/NEJMoa1304839) [CrossRef](/lookup/external-ref?access_num=10.1056/NEJMoa1304839&link_type=DOI) [PubMed](/lookup/external-ref?access_num=24450891&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000330036200007&link_type=ISI) 111. Doody RS , Thomas RG , Farlow M , et al . Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med 2014;370:311–21.[doi:10.1056/NEJMoa1312889](http://dx.doi.org/10.1056/NEJMoa1312889) [CrossRef](/lookup/external-ref?access_num=10.1056/NEJMoa1312889&link_type=DOI) [PubMed](/lookup/external-ref?access_num=24450890&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000330036200006&link_type=ISI) 112. Servick K . Another major drug candidate targeting the brain plaques of Alzheimer’s disease has failed. What’s left? Science 2019. [Epub ahead of print: 21 Mar 2019]. 113. Henley D , Raghavan N , Sperling R , et al . Preliminary results of a trial of atabecestat in preclinical Alzheimer’s Disease. N Engl J Med 2019;380:1483–5.[doi:10.1056/NEJMc1813435](http://dx.doi.org/10.1056/NEJMc1813435) 114. Wessels AM , Tariot PN , Zimmer JA , et al . Efficacy and safety of Lanabecestat for treatment of early and mild Alzheimer disease: the amaranth and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol 2019;77:199–209.[doi:10.1001/jamaneurol.2019.3988](http://dx.doi.org/10.1001/jamaneurol.2019.3988) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31764959 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) 115. Doody RS , Raman R , Farlow M , et al . A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N Engl J Med 2013;369:341–50.[doi:10.1056/NEJMoa1210951](http://dx.doi.org/10.1056/NEJMoa1210951) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23883379 [CrossRef](/lookup/external-ref?access_num=10.1056/NEJMoa1210951&link_type=DOI) [PubMed](/lookup/external-ref?access_num=23883379&link_type=MED&atom=%2Fjim%2F68%2F6%2F1135.atom) [Web of Science](/lookup/external-ref?access_num=000322223900009&link_type=ISI)