Cancer immunotherapy in adult patients with HIV =============================================== * Suha Abu Khalaf * Dima Dandachi * Bruno P Granwehr * Maria C Rodriguez-Barradas ## Abstract The availability of antiretroviral therapy (ART) has increased the life expectancy of people with HIV (PWH) and reduced the incidence of AIDS-associated malignancies, yet PWH have a significantly increased incidence of malignancy and less favorable outcomes of cancer treatment compared with the general population. Immunotherapy has revolutionized cancer therapy, becoming the standard of care for various malignancy treatments. However, PWH are an underserved population with limited access to clinical trials and cancer treatment. This review of the available evidence on different classes of cancer immunotherapy in PWH is mostly based on case reports, case series, but few prospective studies and clinical trials due to the exclusion of PWH from most oncologic clinical trials. The results of the available evidence support the safety of immunotherapy in PWH. Immunotherapy has similar effectiveness in PWH, an acceptable toxicity profile, and has no clinically significant impact on HIV viral load and CD4-T cell count. In addition, there is no reported change in the incidence of opportunistic infections and other complications for PWH with well-controlled viremia. This review aims to briefly summarize the current state of immunotherapy in cancer, guide clinicians in the management of immunotherapy in cancer PWH, and encourage the inclusion of PWH in clinical trials of cancer immunotherapy. * immunotherapy * adoptive * immunosuppression ## Introduction Multiple immune-based cancer therapies have been approved for the treatment of malignancy and have resulted in higher and more durable response rates with improved survival.1–4 Moreover, cancer immunotherapies have a more acceptable toxicity profile when compared with traditional cytotoxic therapy, with fewer drug–drug interactions.5 Currently available immunotherapy treatment is divided into five categories: cellular immunotherapy, immunomodulators, targeted antibodies, oncolytic virus therapy, and therapeutic cancer vaccines5 6 (table 1). With a better understanding of the cancer tumor microenvironment and the advancement of bioengineering technology, immunotherapy continues to expand, and new potential targets are being developed. Cancer immunotherapy is anticipated to be used in an increasing number of patients with cancer.7 View this table: [Table 1](/content/70/4/883/T1) Table 1 Cancer immunotherapy classes and approved FDA medications The introduction of antiretroviral therapy (ART) has dramatically improved the outcomes of people with HIV (PWH) and has reduced the incidence of AIDS-associated malignancies.8 However, cancer remains a major cause of death in this population. PWH are at higher risk of malignancy compared with the general population.9 10 Melanoma, Kaposi sarcoma (KS), non-Hodgkin’s lymphoma (NHL), cervical cancer, and other viral infection-related malignancies such as malignancies related to human papillomavirus, Epstein-Barr virus, and hepatitis B and C viruses are significantly more common in patients with HIV.11–13 Healthcare disparities,2 and lack of knowledge of the safety and efficacy of cancer immunotherapy among PWH, limit access to treatment on this population at risk. Despite the recommendation from the American Society of Clinical Oncology supporting the inclusion of PWH in cancer clinical trials,14 a recent study found that 72.9% of recent cancer immunotherapy trials specifically exclude PWH.15 The data on the use of immunotherapy in PWH diagnosed with cancer are scarce. We aim to review the available evidence on the safety and effectiveness of the different classes of immunotherapy, including immunomodulators, cellular-based immunotherapy, therapeutic cancer vaccines, and targeted antibodies, in treating PWH and cancer. We will discuss only medications that have been approved by the US Food and Drug Administration (FDA) for cancer treatment. ## Methodology We systematically searched PubMed for articles on cancer immunotherapy treatment for PWH, using the following keywords: HIV, AIDS, immunotherapy, checkpoint inhibitors, chimeric antigen receptor (CAR)-T cell, monoclonal antibodies (MoAbs). We included any article type. We initially identified 8230 publications. We limited the search to the English language, human studies, cancer, and to a period between September 6, 2011 and September 6, 2021. The search resulted in 651 articles that were screened by 2 investigators (DD and SAK) for relevancy. We excluded duplicates, studies focusing on immunotherapy for HIV treatment, management of HIV reservoir, and context of HIV vaccine development. We also reviewed the reference lists of the retrieved publications for additional correlating studies. References identified were imported into EndNote (Clarivate Analytics). ## Discussion ### Immunomodulators #### Immune checkpoint inhibitors T-cell activation, proliferation, and differentiation are complex and are regulated by multiple levels of control. Inhibitory receptors expressed on T cells, called immune checkpoints, aim at regulating the immune system by preventing the activation of self-reactive T cells and autoimmunity. These checkpoints play a significant role in immuno-oncology.16 Cancer cells evade immunosurveillance by stimulating these checkpoint pathways and subsequently suppressing the T cells and natural killer (NK) cells.17 Similarly, HIV infection persists by evading immune recognition through establishing a latent infection and increased expression of checkpoints on CD4 and CD8 T cells.18 The most established cancer therapies targeting the checkpoint pathways either block cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed cell death-1 (PD-1), or its complementary PD-ligand 1.19 Blocking these immune checkpoints prevents T-cell inhibition, resulting in the activation and proliferation of effector T cells which enhances the anti-tumor immune response but also leads to potential immune-related adverse events (AEs) of variable severity.20 21 Initially, the US FDA approved immune checkpoint inhibitors (ICIs) for the treatment of melanoma. Since then, their usage has extended to other malignancies. Clinical data have demonstrated that ICIs have a favorable toxicity profile and potent activity on several malignancies.21 PWH are historically excluded from clinical trials for cancer treatment with ICI due to concerns of tolerance, efficacy, and direct effect on HIV replication. However, PWH might potentially attain additional benefits from ICI therapy, in addition to activity against malignancy. For many years, the use of immunotherapy has been investigated as a curative strategy for HIV. ICI showed promising in-vitro results that are undergoing study in PWH.19 The first clinical trial comparing the effect of nivolumab versus nivolumab and ipilimumab demonstrated that combination therapy, not monotherapy, induced a small HIV latency-reversing effect warranting additional investigation.18 There have been many case reports and case series published about PWH who received ICI for cancer treatment.17 22–38 A systematic review39 of PWH with advanced cancer treated with ICI, conducted in April 2018, identified 73 patients. The majority were male (90%) and received anti-PD-1 inhibitors, nivolumab (40%) and pembrolizumab (35%), and an unspecified anti-PD-1 (10%). The rest of the patients received either a CTLA-4 inhibitor, ipilimumab (8%), or combination ipilimumab with anti-PD-1 (7%). Cancer types were non-small cell lung carcinoma (34%), melanoma (22%), and KS (12%), anal cancer (7%), head and neck cancer (6%), and other (20%). AEs were similar to patients without HIV infection. Combination therapy of anti-PD-1 and anti-CTLA-4 was more likely to be associated with grade 3 or higher immune-related AEs. The overall response rate was consistent with trials of patients without HIV. Many of these patients did not have baseline HIV viral load or CD4 reported. However, among patients with HIV viral load and CD4 cell counts available before and after ICI therapy, there was no evidence of negative impact on viral suppression or CD4 cell counts.39 A more recent systematic review19 identified 176 PWH who received ICI as cancer therapy (83%) or as HIV-targeted therapy (17%). The review included pooled data from 19 case reports, 9 case series, and 3 clinical trials. Non-severe AEs were reported in 49% of the patients, while severe AEs were reported in 12%, comparable with the incidence of severe AEs reported from patients without HIV (13%–14%). Severe AEs included pneumonitis, enterocolitis, autoimmune hepatitis, skin eruption, nephritis, neutropenia, and lymphopenia. One patient developed neurosyphilis soon after treatment with nivolumab and responded well to treatment. One patient had KS-lymphoproliferative disease and died. There was no immune reconstitution inflammatory syndrome noted in any of these reports. In addition, there was no significant impact on HIV viral load or CD4 cell counts.19 In table 2, we summarize 3 clinical trials and 1 prospective observational study on PWH treated with ICI for cancer therapy.36 40–42 In most case reports and studies, at the time of ICI initiation, patients were on ART and had controlled HIV, with a range of CD4 cell counts. Several clinical trials studying the use of ICI, alone or in combination, in PWH with advanced cancer are underway.43 View this table: [Table 2](/content/70/4/883/T2) Table 2 Clinical trials and prospective study on patients with HIV treated with immune checkpoint inhibitors for cancer therapy #### Cytokines Cytokines are proteins that act to facilitate intercellular inflammatory interactions.44 45 Cytokines as cancer monotherapy that failed to prove their efficacy through clinical trials, but appear to enhance the activity of checkpoint inhibitors.46 Two cytokines were approved by FDA as monotherapy, interleukin (IL)-2 and interferon-alpha (IFN-α).47 Another cytokine, IL-12 showed a potent anti-cancer effect in preclinical models, but use has been limited by systemic toxicities. Localized treatment to minimize systemic exposure is undergoing study in clinical trials.48 IL-2 is secreted by activated T-helper cells to stimulate proliferation of B and T cells44 49 and is a major trigger in activating the proliferation of NK cells, and B and T lymphocytes.50 IL-2 was approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. The overall response rate ranged from 15% to 20%.51 The use of IL-2 in PWH was studied starting more than 20 years ago as an HIV treatment and yielded no clinical benefit despite leading to increases in CD4 cell counts.52 53 Subcutaneous IL-12 showed potent activity on AIDS-related KS. In a phase 1 study on 32 PWH and progressive KS despite ART, the observed overall response rate was 61%.54 In a subsequent study, the combination of subcutaneous IL-12 with doxorubicin resulted in substantial tumor response. The primary AEs noted were influenza-like symptoms, neutropenia, anemia, elevated transaminases, and bilirubin.55 IFN also has immunomodulatory effects against tumors.56 IFN-α was found to have pro-apoptotic, anti-proliferative activities, and antiangiogenic characteristics.45 One of the first cytokine immunotherapies used in PWH is IFN-α for the treatment of HIV.57 The response rate for treatment of HIV-associated KS with IFN-α was around 20%–40%.58–62 IFN-α was approved by the FDA for the treatment of AIDS-related KS in 1988.63 64 However, IFN-α is rarely used at present, especially as monotherapy, due to associated AEs, decreased incidence of KS, and the emergence of new agents.64 ### Cellular immunotherapy, also known as adoptive cell therapy #### CAR-T cell therapy This type of therapy uses harvested human T cells from peripheral blood and genetically modifies these cells to express CARs. These cells are multiplied, a process that takes 2–3 weeks. CAR-T cells are then reinfused to the patient to bind to specific antigens presented by the cancer cells and produce a potent anti-tumor effect.65 Current CAR-T cell therapies have two cancer targets, the B-cell marker (CD19), typically expressed by leukemia, lymphoma, and myeloma cells, or the B-cell maturation antigen (BCMA), typically expressed by myeloma cells. Clinical trials of CAR-T cell immunotherapy have shown positive results.66 The first CAR-T cell therapy was approved in 2017. The FDA has now approved 4 anti-CD19 CAR-T cells for the treatment of relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL) in young adults up to age 25 years and specific subsets of B-cell lymphomas and 1 anti-BCMA CAR-T cell for refractory multiple myeloma (table 1).67 However, CAR-T cell therapies have significant side effects that could be life-threatening. The US FDA provides boxed warnings about the risk of cytokine release syndrome (CRS) and immune cell-associated neurotoxicity syndrome (ICANS). All CAR-T cell therapies are approved for use under a risk evaluation and mitigation strategy program.68 The use of cellular immunotherapy as a strategy to target and treat HIV has been studied in the past,69 but the use of CAR-T cell therapy to treat cancer in PWH has not been studied.70 The safety and efficacy of CAR-T cell to treat hematological malignancies might be different in patients with or without HIV. First, CAR-T cell therapy in PWH will be derived from HIV-infected T cells. PWH might have HIV-mediated T-cell depletion. There are concerns for interaction between ART and CAR-T cell therapy and a higher risk of infectious and immune-mediated complications. In addition, baseline cytokine levels could be different in PWH compared with patients without HIV, which could affect the incidence and the severity of CRS and neurological complications, as well as the expansion and persistence of CAR-T cell therapy.71 The FDA does not exclude PWH for the approved CAR-T cell therapies, yet in a small international survey sent in 2019 to physicians with experience in administering CAR-T cell therapies, there was a general agreement that patients with chronic viral infections, including HIV, should not be eligible for treatment.72 A total of 4 PWH were treated with anti-CD19 CAR-T cells (axicabtagene ciloleucel) for R/R diffuse large B-cell lymphoma (DLBCL). In 1 report, 2 PWH underwent successful autologous CAR-T cell therapy along with ART that resulted in long-term remission of the lymphoma. One patient had a CD4 cell count of 52 cells/mm3 at the time of apheresis and the other patient had a CD4 cell count of 127 cells/mm3. The side effects were consistent with expected CAR-T cell therapy in patients without HIV and were reversible with standard therapy.73 A case series of 10 patients who received CAR-T cell therapy for R/R DLBCL included 1 PWH on ART. The patient had complete remission at 3 months and had no significant toxicities.74 Allred *et al* reported a patient with well-controlled HIV on ART who underwent CAR-T cell for R/R DLBCL, had grade I CRS and grade II ICANS that resolved with standard protocol; however, at 2 months after CAR-T cell therapy, the patient had evidence of disease progression (table 3).75 View this table: [Table 3](/content/70/4/883/T3) Table 3 Characteristics and outcomes of patients with HIV who received CAR-T cell therapy (ref) These case reports have established that CAR-T cell therapy among PWH is possible, even in the context of HIV-associated T-cell depletion, and suggest that it has a comparable safety profile and effectiveness with those without HIV infection. Allred *et al* suggest several steps to optimize CAR-T cell therapy for PWH: engage a multidisciplinary team, achieve HIV control, review and change ART to minimize drug interactions and overlapping toxicities, screen for and treat opportunistic infections, closely monitor HIV control every 3 months for 1 year after CAR-T cell therapy, assess for immune reconstitution, and administer infection prophylaxis for pneumocystis pneumonia, herpes simplex virus (HSV), varicella-zoster virus, and mold.75 ### Therapeutic cancer vaccines Multiple efforts are underway to develop vaccines against HIV, but the following section will focus on the use of vaccines for cancer treatment in PWH. #### Bacillus Calmette-Guérin BCG is a live-attenuated strain of *Mycobacterium bovis*.76 Intravesical BCG is indicated as adjunctive therapy for non-muscle-invasive bladder cancer (NMIBC) at high risk of disease progression.77 It has been the gold standard and the most effective treatment for NMIBC in the last 40 years.78 The BCG’s mechanism of action is not fully understood. Intravesical BCG has a direct effect on tumor growth and an indirect effect. BCG triggers local inflammation and immune response and induces CD4 T cells and macrophages to improve recognition and destruction of tumor cells.79 Transmucosal absorption of intravesical BCG is limited. However, the risk of systemic BCG infection might be increased with mucosal damage, old age, and immunosuppression. Data on immunocompromised patients receiving BCG treatment are limited to draw any conclusions.80–82 PWH are theoretically at high risk of developing systemic infections.83 84 The benefit of prophylactic anti-tuberculous agents such as isoniazid is not established.85 86 In addition, BCG immunotherapy might not be effective in patients with impaired cell-mediated immune response.76 There are only 2 case reports of PWH who received BCG intravesical therapy for bladder cancer. In the first report, 2 patients developed a culture-proven pulmonary infection after treatment with BCG, 1 of them HIV positive.87 In a case series of 10 PWH and bladder cancer, 1 patient received intravesical BCG without infectious complications.76 Given the critical shortage of BCG therapy, potential systemic infection, and lack of clear efficacy in this group population, alternative treatment should be considered in PWH and NMIBC. #### Sipuleucel-T Sipuleucel-T uses stimulated dendritic cells (DCs) to produce an anti-tumor response. DC precursors are harvested from the patient’s peripheral blood, primed ex-vivo to target prostatic acid phosphatase, and then reinfused.88 89 Sipuleucel-T was the first therapeutic cancer vaccine to be approved by the FDA in 2010 for the treatment of asymptomatic patients with metastatic castration-resistant prostate cancer.90 AEs were mostly mild and resolved few days after treatment.91 However, sipuleucel-T is not commonly used, secondary to controversies in regard to its effectiveness, high cost, and availability of other treatment options.92 There are no available clinical data about the safety and efficacy of sipuleucel-T in PWH since they were excluded from clinical trials.93 There are also no available case reports. #### Oncolytic virus therapy Oncolytic virus therapy uses genetically engineered viruses to target malignant cells. These viruses are modified by deleting and inserting new genes to decrease their ability to infect healthy cells and to enhance their tumor-specific tropism. After infection, oncolytic viruses cause lysis of tumor cells leading to the release and recognition of cancer antigens and the activation of immune response overcoming the immune evasiveness of tumor cells.94–96 Talimogene laherparepvec is a modified HSV-1 and is the only currently FDA-approved oncolytic virus therapy, for the treatment of inoperable melanoma.97 The main challenge of oncolytic viral therapy is the poor bioavailability when systemically administered. To achieve adequate drug delivery and clinical effectiveness, the treatment is administered by direct intratumoral injection. This led to improvement of durable response rates and even regression in distant non-injected tumor sites without significant serious AEs.96 98–100 Potential safety concerns include viral mutation with the potential ability for off-target infection, unexpected toxicities, virus shedding, and transmissibility of the virus.101 Modified HSV oncolytic virus retained the thymidine kinase gene, a target for ganciclovir therapy that could potentially control an infection.96 Clinical trials for oncolytic virotherapy have excluded patients who are immunocompromised. No clinical data are available on PWH receiving oncolytic virus therapy. ### Targeted antibodies The availability of MoAbs for cancer treatment has significantly expanded the options for cancer treatment while minimizing drug–drug interactions. Targeted antibody therapies include MoAbs, antibody–drug conjugates, and bispecific antibodies. #### Monoclonal antibodies MoAbs are proteins developed to target specific cancer antigens. After binding to cancer cells, antibodies disrupt different pathways of cancer cell activity. The FDA approved the first MoAb rituximab for cancer therapy in 1997, since then many more have been approved for cancer treatment.102 103 MoAbs are either used as monotherapy or more likely in combination with chemotherapy.104 In PWH, the use of anti-CD20 MoAb, rituximab, has been the most studied in the management of HIV-associated lymphomas.105 106 The only randomized controlled trial comparing the addition of rituximab with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) versus CHOP in 150 patients with HIV-associated NHL did not show a statistically significant improvement in tumor response rate and was associated with an increase in infection-related deaths, 60% of these deaths occurred in patients with CD4 cell count <50 cells/mm3.107 Barta *et al* analyzed pooled individual data from 19 prospective clinical trials, including 1546 PWH with NHL; 84% were male, the median age was 40 years, 69% had DLBCL, 26% had Burkitt lymphoma/Burkitt-like lymphoma, or other (6%). Patients received various chemotherapy regimens, with CHOP the most used regimen (41%). Rituximab was added in 35% of the cases. In contrast to the previously described randomized controlled trial comparing R-CHOP with CHOP, these data have shown that the addition of rituximab improved overall survival, progression-free survival, and increased complete response rate by almost 3-fold in patients, notably in patients with CD4 cell count >50 cells/mm3.108 Rituximab-based therapy has improved the prognosis of HIV-associated multicentric Castleman disease (MCD) as well.109 A retrospective analysis of 113 patients with HIV-MCD suggested that rituximab therapy lowered the risk of developing NHL by 11-fold.110 Bevacizumab is a MoAb targeting the vascular endothelial growth factor and its receptor. Main AEs include cardiovascular, such as stroke and myocardial infarction, as well as non-cardiovascular, including proteinuria, hypertension, bleeding, and gastrointestinal perforation. A phase II clinical trial investigated the use of systemic bevacizumab in 17 PWH-associated KS. It was well tolerated, with an overall response rate of 31%.111 A subsequent study by the same group investigated toxicity and efficacy of combination liposomal doxorubicin with bevacizumab for PWH and KS, who failed to respond to ART or had advanced KS. The overall response rate was 56%, suggesting that combination therapy might result in improved response, compared with bevacizumab monotherapy. However, this study included 2 patients out of 16 who were HIV negative.112 In an open-label phase 2 study, 14 PWH with KS in the upper airway were randomized 1:1 to ART alone versus ART and intralesional bevacizumab. No difference in tumor response was observed between these two groups.113 The use of other MoAbs in PWH and different types of cancers has been described in several case reports: bevacizumab in 2 patients with colorectal cancer (CRC)114 115 and 1 patient with metastatic hepatocellular carcinoma116; cetuximab in metastatic CRC117; alemtuzumab in a patient with Sezary syndrome118; and the successful treatment of primary effusion lymphoma with daratumumab.119 The treatment was well tolerated in these cases. For trastuzumab adjuvant chemotherapy, 2 PWH with human epidermal growth factor receptor 2-positive breast cancer were unable to receive the intended regimen due to cardiotoxicity, 1 possibly attributable to trastuzumab.120 #### Antibody–drug conjugates Antibody–drug conjugates are MoAbs conjugated with a highly potent cytotoxic drug that will be directly delivered to cancerous cells.121–124 Many antibody–drug conjugates are now approved for the treatment of hematologic and solid malignancies. Brentuximab vedotin, an antibody–drug conjugate, in combination with doxorubicin, vinblastine, and dacarbazine, was studied in 6 patients with HIV-associated HL. All patients showed a complete response. It was well tolerated with minimal complications.125 #### Bispecific antibodies Bispecific antibodies (BsAbs) have 2 different antigen-binding sites, 1 directed to tumor-specific antigen and the other targeting immune cells to activate the anti-cancer immune response.126 The advantages of BsAb over MoAb include higher binding specificity, enhanced cytotoxic effect by bridging immune cells to the cancer cells, and lower risk of resistance by targeting 2 different receptors on the same tumor cell.127 Blinatumomab is an FDA-approved BsAb, bispecific T-cell engager for treatment of R/R B-lineage ALL. Blinatumomab binds the CD19 on B-lymphocyte cancer cells to the CD3 on cytotoxic T-cell lymphocytes, activating and directing T lymphocytes to destroy cancer cells.127 In May 2021, the FDA granted accelerated approval to amivantamab, the second BsAb for adult patients with metastatic non-small lung cancer based on the overall response rate of 40% and median response duration of 11.1 months.128 Unfortunately, there are no available clinical data, including case reports, regarding the treatment of patients with HIV with these agents, although a recent trial with amivantamab for adenoid cystic adenocarcinoma allows patients with well-controlled HIV to be included. ## Conclusion ART has improved clinical outcomes, reduced the incidence of AIDS-associated malignancies, and increased life expectancy for PWH, yet PWH continue to have a significantly increased incidence of malignancy with less favorable outcomes and decreased access to clinical trials and cancer treatment, compared with the general population. This review of the available literature on cancer immunotherapy in PWH suggests that using immunotherapy is likely to be feasible and effective, similar to its effects in patients without HIV infection, and without unexpected toxicities.37 These results suggest that barriers need to be addressed and efforts implemented to include this underserved population in future clinical trials, so that PWH may also benefit from the therapeutic advances in cancer therapy. Bender Ignacio *et al* question the use of CD4 absolute cell count as a criterion for clinical trial eligibility since CD4 lymphopenia is partly related to the immunosuppressive effects of cancer. Moreover, the higher mortality associated with a chemotherapy-related decline in CD4 cell counts is particularly why immunotherapy should be introduced early in HIV-associated cancer to avoid additional immunosuppression.129 Criteria for PWH that are well controlled should be similar to non-HIV-infected patients, avoiding the exclusion of those patients with well-controlled HIV and similar comorbidities to other patients undergoing evaluation for cancer treatment or inclusion in clinical trials. ## Ethics statements ### Patient consent for publication Not required. ### Ethics approval This study does not involve human participants. ## Footnotes * Contributors SAK—conceptualization and writing (original draft). DD—supervision and writing (review and editing). BPG—supervision and writing (review and editing). MCR-B—supervision and writing (review and editing). All authors have reviewed and approved the content and have contributed significantly to the work. * Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. * Competing interests None declared. * Provenance and peer review Not commissioned; internally peer reviewed. ## References 1. Sigel K , Park L , Justice A . Hiv and cancer in the Veterans health administration system. Semin Oncol 2019;46:334–40.[doi:10.1053/j.seminoncol.2019.09.007](http://dx.doi.org/10.1053/j.seminoncol.2019.09.007) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31703932 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 2. Suneja G , Shiels MS , Angulo R , et al . Cancer treatment disparities in HIV-infected individuals in the United States. J Clin Oncol 2014;32:2344–50.[doi:10.1200/JCO.2013.54.8644](http://dx.doi.org/10.1200/JCO.2013.54.8644) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24982448 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIzMi8yMi8yMzQ0IjtzOjQ6ImF0b20iO3M6MTg6Ii9qaW0vNzAvNC84ODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 3. Makinson A , Park LS , Stone K , et al . Risks of opportunistic infections in people with human immunodeficiency virus with cancers treated with chemotherapy. Open Forum Infect Dis 2021;8:ofab389.[doi:10.1093/ofid/ofab389](http://dx.doi.org/10.1093/ofid/ofab389) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34458394 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 4. Liu M , Guo F . Recent updates on cancer immunotherapy. Precis Clin Med 2018;1:65–74.[doi:10.1093/pcmedi/pby011](http://dx.doi.org/10.1093/pcmedi/pby011) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30687562 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 5. Galluzzi L , Vacchelli E , Bravo-San Pedro J-M , et al . Classification of current anticancer immunotherapies. Oncotarget 2014;5:12472–508.[doi:10.18632/oncotarget.2998](http://dx.doi.org/10.18632/oncotarget.2998) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25537519 [CrossRef](/lookup/external-ref?access_num=10.18632/oncotarget.2998&link_type=DOI) [PubMed](/lookup/external-ref?access_num=25537519&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 6. Sambi M , Bagheri L , Szewczuk MR . Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol 2019;2019:4508794.[doi:10.1155/2019/4508794](http://dx.doi.org/10.1155/2019/4508794) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30941175 [CrossRef](/lookup/external-ref?access_num=10.1155/2019/4508794&link_type=DOI) [PubMed](/lookup/external-ref?access_num=30941175&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 7. Stanculeanu DL , Daniela Z , Lazescu A , et al . Development of new immunotherapy treatments in different cancer types. J Med Life 2016;9:240–8.pmid:http://www.ncbi.nlm.nih.gov/pubmed/27974927 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 8. Bonnet F , Lewden C , May T , et al . Malignancy-related causes of death in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Cancer 2004;101:317–24.[doi:10.1002/cncr.20354](http://dx.doi.org/10.1002/cncr.20354) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15241829 [CrossRef](/lookup/external-ref?access_num=10.1002/cncr.20354&link_type=DOI) [PubMed](/lookup/external-ref?access_num=15241829&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=000222520500014&link_type=ISI) 9. Silverberg MJ , Lau B , Achenbach CJ , et al . Cumulative incidence of cancer among persons with HIV in North America: a cohort study. Ann Intern Med 2015;163:507–18.[doi:10.7326/M14-2768](http://dx.doi.org/10.7326/M14-2768) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26436616 [CrossRef](/lookup/external-ref?access_num=10.7326/M14-2768&link_type=DOI) [PubMed](/lookup/external-ref?access_num=26436616&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 10. Chiao EY , Coghill A , Kizub D , et al . The effect of non-AIDS-defining cancers on people living with HIV. Lancet Oncol 2021;22:e240–53.[doi:10.1016/S1470-2045(21)00137-6](http://dx.doi.org/10.1016/S1470-2045(21)00137-6) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34087151 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 11. Rubinstein PG , Aboulafia DM , Zloza A . Malignancies in HIV/AIDS: from epidemiology to therapeutic challenges. AIDS 2014;28:453–65.[doi:10.1097/QAD.0000000000000071](http://dx.doi.org/10.1097/QAD.0000000000000071) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24401642 [CrossRef](/lookup/external-ref?access_num=10.1097/QAD.0000000000000071&link_type=DOI) [PubMed](/lookup/external-ref?access_num=24401642&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=000332387000001&link_type=ISI) 12. Vangipuram R , Tyring SK . AIDS-Associated malignancies. Cancer Treat Res 2019;177:1–21.[doi:10.1007/978-3-030-03502-0\_1](http://dx.doi.org/10.1007/978-3-030-03502-0_1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30523619 [CrossRef](/lookup/external-ref?access_num=10.1007/978-3-030-03502-0_1&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 13. Dubrow R , Silverberg MJ , Park LS , et al . HIV infection, aging, and immune function: implications for cancer risk and prevention. Curr Opin Oncol 2012;24:506–16.[doi:10.1097/CCO.0b013e328355e131](http://dx.doi.org/10.1097/CCO.0b013e328355e131) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22759737 [PubMed](/lookup/external-ref?access_num=22759737&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 14. Reuss JE , Stern D , Foster JC , et al . Assessment of cancer therapy evaluation program advocacy and inclusion rates of people living with HIV in Anti-PD1/PDL1 clinical trials. JAMA Netw Open 2020;3:e2027110.[doi:10.1001/jamanetworkopen.2020.27110](http://dx.doi.org/10.1001/jamanetworkopen.2020.27110) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33258905 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 15. Vora KB , Awad MM . Exclusion rates of patients living with HIV from cancer immunotherapy clinical trials. Journal of Clinical Oncology 2020;38:e19035.[doi:10.1200/JCO.2020.38.15\_suppl.e19035](http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.e19035) 16. Saibil SD , Ohashi PS . Targeting T cell activation in immuno-oncology. Curr Oncol 2020;27:S98–105.[doi:10.3747/co.27.5285](http://dx.doi.org/10.3747/co.27.5285) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32368179 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 17. Davar D , Wilson M , Pruckner C , et al . PD-1 blockade in advanced melanoma in patients with hepatitis C and/or HIV. Case Rep Oncol Med 2015;2015:737389.[doi:10.1155/2015/737389](http://dx.doi.org/10.1155/2015/737389) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26448890 [CrossRef](/lookup/external-ref?access_num=10.1155/2015/737389&link_type=DOI) [PubMed](/lookup/external-ref?access_num=26448890&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 18. Rasmussen TA , Rajdev L , Rhodes A , et al . Impact of anti-PD-1 and anti-CTLA-4 on the human immunodeficiency virus (HIV) reservoir in people living with HIV with cancer on antiretroviral therapy: the AIDS malignancy Consortium 095 study. Clin Infect Dis 2021;73:e1973–81.[doi:10.1093/cid/ciaa1530](http://dx.doi.org/10.1093/cid/ciaa1530) 19. Abbar B , Baron M , Katlama C , et al . Immune checkpoint inhibitors in people living with HIV: what about anti-HIV effects? AIDS 2020;34:167–75.[doi:10.1097/QAD.0000000000002397](http://dx.doi.org/10.1097/QAD.0000000000002397) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31634190 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 20. Kaufmann DE , Walker BD . PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J Immunol 2009;182:5891–7.[doi:10.4049/jimmunol.0803771](http://dx.doi.org/10.4049/jimmunol.0803771) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19414738 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTE6IjE4Mi8xMC81ODkxIjtzOjQ6ImF0b20iO3M6MTg6Ii9qaW0vNzAvNC84ODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. Ventola CL . Cancer immunotherapy, part 2: efficacy, safety, and other clinical considerations. P T 2017;42:452–63.pmid:http://www.ncbi.nlm.nih.gov/pubmed/28674473 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 22. Burke MM , Kluger HM , Golden M , et al . Case report: response to ipilimumab in a patient with HIV with metastatic melanoma. J Clin Oncol 2011;29:e792–4.[doi:10.1200/JCO.2011.36.9199](http://dx.doi.org/10.1200/JCO.2011.36.9199) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21990407 [FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIyOS8zMi9lNzkyIjtzOjQ6ImF0b20iO3M6MTg6Ii9qaW0vNzAvNC84ODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 23. Ruzevick J , Nicholas S , Redmond K , et al . A patient with HIV treated with ipilimumab and stereotactic radiosurgery for melanoma metastases to the brain. Case Rep Oncol Med 2013;2013:946392.[doi:10.1155/2013/946392](http://dx.doi.org/10.1155/2013/946392) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24383025 [PubMed](/lookup/external-ref?access_num=24383025&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 24. Wightman F , Solomon A , Kumar SS , et al . Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS 2015;29:504–6.[doi:10.1097/QAD.0000000000000562](http://dx.doi.org/10.1097/QAD.0000000000000562) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25628259 [CrossRef](/lookup/external-ref?access_num=10.1097/QAD.0000000000000562&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 25. Hentrich M , Schipek-Voigt K , Jäger H , et al . Nivolumab in HIV-related non-small-cell lung cancer. Ann Oncol 2017;28:2890.[doi:10.1093/annonc/mdx321](http://dx.doi.org/10.1093/annonc/mdx321) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29106466 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 26. Heppt MV , Schlaak M , Eigentler TK , et al . Checkpoint blockade for metastatic melanoma and Merkel cell carcinoma in HIV-positive patients. Ann Oncol 2017;28:3104–6.[doi:10.1093/annonc/mdx538](http://dx.doi.org/10.1093/annonc/mdx538) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28950303 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 27. Le Garff G , Samri A , Lambert-Niclot S , et al . Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. AIDS 2017;31:1048–51.[doi:10.1097/QAD.0000000000001429](http://dx.doi.org/10.1097/QAD.0000000000001429) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28350581 [CrossRef](/lookup/external-ref?access_num=10.1097/QAD.0000000000001429&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 28. McCullar B , Alloway T , Martin M . Durable complete response to nivolumab in a patient with HIV and metastatic non-small cell lung cancer. J Thorac Dis 2017;9:E540–2.[doi:10.21037/jtd.2017.05.32](http://dx.doi.org/10.21037/jtd.2017.05.32) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28740692 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 29. Sandoval-Sus JD , Mogollon-Duffo F , Patel A , et al . Nivolumab as salvage treatment in a patient with HIV-related relapsed/refractory Hodgkin lymphoma and liver failure with encephalopathy. J Immunother Cancer 2017;5:49.[doi:10.1186/s40425-017-0252-3](http://dx.doi.org/10.1186/s40425-017-0252-3) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28642818 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaml0YyI7czo1OiJyZXNpZCI7czo2OiI1LzEvNDkiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 30. Morris VK , Salem ME , Nimeiri H , et al . Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol 2017;18:446–53.[doi:10.1016/S1470-2045(17)30104-3](http://dx.doi.org/10.1016/S1470-2045(17)30104-3) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28223062 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 31. Ostios-Garcia L , Faig J , Leonardi GC , et al . Safety and efficacy of PD-1 inhibitors among HIV-positive patients with non-small cell lung cancer. J Thorac Oncol 2018;13:1037–42.[doi:10.1016/j.jtho.2018.03.031](http://dx.doi.org/10.1016/j.jtho.2018.03.031) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29631035 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 32. Tomsitz D , Hein R , Biedermann T , et al . Treatment of a patient with HIV and metastatic melanoma with consequitive ipilimumab and nivolumab. J Eur Acad Dermatol Venereol 2018;32:e26–8.[doi:10.1111/jdv.14450](http://dx.doi.org/10.1111/jdv.14450) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28662283 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 33. Al Homsi MU , Mostafa M , Fahim K . Favorable response to treatment with Avelumab in an HIV-positive patient with advanced Merkel cell carcinoma previously refractory to chemotherapy. Case Rep Oncol 2018;11:467–75.[doi:10.1159/000490636](http://dx.doi.org/10.1159/000490636) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30140209 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 34. Guihot A , Marcelin A-G , Massiani M-A , et al . Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. Ann Oncol 2018;29:517–8.[doi:10.1093/annonc/mdx696](http://dx.doi.org/10.1093/annonc/mdx696) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29206889 [CrossRef](/lookup/external-ref?access_num=10.1093/annonc/mdx696&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 35. Husnain M , Park W , Ramos JC , et al . Complete response to ipilimumab and nivolumab therapy in a patient with extensive extrapulmonary high-grade small cell carcinoma of the pancreas and HIV infection. J Immunother Cancer 2018;6:66.[doi:10.1186/s40425-018-0379-x](http://dx.doi.org/10.1186/s40425-018-0379-x) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29986769 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaml0YyI7czo1OiJyZXNpZCI7czo2OiI2LzEvNjYiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 36. Scully EP , Rutishauser RL , Simoneau CR , et al . Inconsistent HIV reservoir dynamics and immune responses following anti-PD-1 therapy in cancer patients with HIV infection. Ann Oncol 2018;29:2141–2.[doi:10.1093/annonc/mdy259](http://dx.doi.org/10.1093/annonc/mdy259) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30032204 [CrossRef](/lookup/external-ref?access_num=10.1093/annonc/mdy259&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 37. Spano J-P , Veyri M , Gobert A , et al . Immunotherapy for cancer in people living with HIV: safety with an efficacy signal from the series in real life experience. AIDS 2019;33:F13–19.[doi:10.1097/QAD.0000000000002298](http://dx.doi.org/10.1097/QAD.0000000000002298) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31259762 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 38. Serrao A , Canichella M , De Luca ML , et al . Nivolumab as a safe and effective treatment in an HIV patient with refractory Hodgkin lymphoma. Ann Hematol 2019;98:1505–6.[doi:10.1007/s00277-018-3541-0](http://dx.doi.org/10.1007/s00277-018-3541-0) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30413900 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 39. Cook MR , Kim C . Safety and efficacy of immune checkpoint inhibitor therapy in patients with HIV infection and advanced-stage cancer: a systematic review. JAMA Oncol 2019;5:1049–54.[doi:10.1001/jamaoncol.2018.6737](http://dx.doi.org/10.1001/jamaoncol.2018.6737) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30730549 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 40. Uldrick TS , Gonçalves PH , Abdul-Hay M , et al . Assessment of the safety of pembrolizumab in patients with HIV and advanced cancer-a phase 1 study. JAMA Oncol 2019;5:1332–9.[doi:10.1001/jamaoncol.2019.2244](http://dx.doi.org/10.1001/jamaoncol.2019.2244) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31154457 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 41. Lavole A , Mazieres J , Schneider S , et al . Assessment of nivolumab in HIV-infected patients with advanced non-small cell lung cancer after prior chemotherapy. The IFCT-1602 CHIVA2 phase 2 clinical trial. Lung Cancer 2021;158:146–50.[doi:10.1016/j.lungcan.2021.05.031](http://dx.doi.org/10.1016/j.lungcan.2021.05.031) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34217967 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 42. Gonzalez-Cao M , Morán T , Dalmau J , et al . Assessment of the feasibility and safety of Durvalumab for treatment of solid tumors in patients with HIV-1 infection: the phase 2 DURVAST study. JAMA Oncol 2020;6:1063–7.[doi:10.1001/jamaoncol.2020.0465](http://dx.doi.org/10.1001/jamaoncol.2020.0465) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32271353 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 43. Belluomini L , Caldart A , Avancini A , et al . Infections and immunotherapy in lung cancer: a bad relationship? Int J Mol Sci 2020;22. doi:[doi:10.3390/ijms22010042](http://dx.doi.org/10.3390/ijms22010042). [Epub ahead of print: 22 Dec 2020].pmid:http://www.ncbi.nlm.nih.gov/pubmed/33375194 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 44. Zhang J-M , An J . Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007;45:27–37.[doi:10.1097/AIA.0b013e318034194e](http://dx.doi.org/10.1097/AIA.0b013e318034194e) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17426506 [CrossRef](/lookup/external-ref?access_num=10.1097/AIA.0b013e318034194e&link_type=DOI) [PubMed](/lookup/external-ref?access_num=17426506&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 45. Berraondo P , Sanmamed MF , Ochoa MC , et al . Cytokines in clinical cancer immunotherapy. Br J Cancer 2019;120:6–15.[doi:10.1038/s41416-018-0328-y](http://dx.doi.org/10.1038/s41416-018-0328-y) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30413827 [CrossRef](/lookup/external-ref?access_num=10.1038/s41416-018-0328-y&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 46. Waldmann TA . Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 2018;10:a028472.[doi:10.1101/cshperspect.a028472](http://dx.doi.org/10.1101/cshperspect.a028472) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29101107 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6ImNzaHBlcnNwZWN0IjtzOjU6InJlc2lkIjtzOjEzOiIxMC8xMi9hMDI4NDcyIjtzOjQ6ImF0b20iO3M6MTg6Ii9qaW0vNzAvNC84ODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 47. Lee S , Margolin K . Cytokines in cancer immunotherapy. Cancers 2011;3:3856–93.[doi:10.3390/cancers3043856](http://dx.doi.org/10.3390/cancers3043856) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24213115 [CrossRef](/lookup/external-ref?access_num=10.3390/cancers3043856&link_type=DOI) [PubMed](/lookup/external-ref?access_num=24213115&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 48. Nguyen KG , Vrabel MR , Mantooth SM , et al . Localized interleukin-12 for cancer immunotherapy. Front Immunol 2020;11:575597.[doi:10.3389/fimmu.2020.575597](http://dx.doi.org/10.3389/fimmu.2020.575597) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33178203 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 49. Waters RS , Perry JSA , Han S , et al . The effects of interleukin-2 on immune response regulation. Math Med Biol 2018;35:79–119.[doi:10.1093/imammb/dqw021](http://dx.doi.org/10.1093/imammb/dqw021) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28339682 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 50. Wrangle JM , Patterson A , Johnson CB , et al . Il-2 and beyond in cancer immunotherapy. J Interferon Cytokine Res 2018;38:45–68.[doi:10.1089/jir.2017.0101](http://dx.doi.org/10.1089/jir.2017.0101) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29443657 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 51. Dutcher JP . Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology 2002;16:4–10.pmid:http://www.ncbi.nlm.nih.gov/pubmed/12469934 [PubMed](/lookup/external-ref?access_num=12469934&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 52. Pett SL , Kelleher AD , Emery S . Role of interleukin-2 in patients with HIV infection. Drugs 2010;70:1115–30.[doi:10.2165/10898620-000000000-00000](http://dx.doi.org/10.2165/10898620-000000000-00000) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20518579 [CrossRef](/lookup/external-ref?access_num=10.2165/10898620-000000000-00000&link_type=DOI) [PubMed](/lookup/external-ref?access_num=20518579&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 53. Abrams D , INSIGHT-ESPRIT Study Group . Interleukin-2 therapy in patients with HIV infection. N Engl J Med 2009;361:1548–59.[doi:10.1056/NEJMoa0903175](http://dx.doi.org/10.1056/NEJMoa0903175) pmid:19828532 [CrossRef](/lookup/external-ref?access_num=10.1056/NEJMoa0903175&link_type=DOI) [PubMed](/lookup/external-ref?access_num=19828532&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=000270777000008&link_type=ISI) 54. Little RF , Pluda JM , Wyvill KM , et al . Activity of subcutaneous interleukin-12 in AIDS-related Kaposi sarcoma. Blood 2006;107:4650–7.[doi:10.1182/blood-2005-11-4455](http://dx.doi.org/10.1182/blood-2005-11-4455) pmid:http://www.ncbi.nlm.nih.gov/pubmed/16507779 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTA3LzEyLzQ2NTAiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 55. Little RF , Aleman K , Kumar P , et al . Phase 2 study of pegylated liposomal doxorubicin in combination with interleukin-12 for AIDS-related Kaposi sarcoma. Blood 2007;110:4165–71.[doi:10.1182/blood-2007-06-097568](http://dx.doi.org/10.1182/blood-2007-06-097568) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17846226 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTEwLzEzLzQxNjUiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 56. Baron S , Tyring SK , Fleischmann WR , et al . The interferons. mechanisms of action and clinical applications. JAMA 1991;266:1375–83.[doi:10.1001/jama.266.10.1375](http://dx.doi.org/10.1001/jama.266.10.1375) pmid:http://www.ncbi.nlm.nih.gov/pubmed/1715409 [CrossRef](/lookup/external-ref?access_num=10.1001/jama.1991.03470100067035&link_type=DOI) [PubMed](/lookup/external-ref?access_num=1715409&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=A1991GD80700032&link_type=ISI) 57. Lane HC , Davey V , Kovacs JA , et al . Interferon-alpha in patients with asymptomatic human immunodeficiency virus (HIV) infection. A randomized, placebo-controlled trial. Ann Intern Med 1990;112:805–11.[doi:10.7326/0003-4819-112-11-805](http://dx.doi.org/10.7326/0003-4819-112-11-805) pmid:http://www.ncbi.nlm.nih.gov/pubmed/1971503 [CrossRef](/lookup/external-ref?access_num=10.7326/0003-4819-112-11-805&link_type=DOI) [PubMed](/lookup/external-ref?access_num=1971503&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=A1990DE90300003&link_type=ISI) 58. Asmuth DM , Murphy RL , Rosenkranz SL , et al . Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial. J Infect Dis 2010;201:1686–96.[doi:10.1086/652420](http://dx.doi.org/10.1086/652420) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20420510 [CrossRef](/lookup/external-ref?access_num=10.1086/652420&link_type=DOI) [PubMed](/lookup/external-ref?access_num=20420510&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=000277176200012&link_type=ISI) 59. McNamara LA , Collins KL . Interferon alfa therapy: toward an improved treatment for HIV infection. J Infect Dis 2013;207:201–3.[doi:10.1093/infdis/jis667](http://dx.doi.org/10.1093/infdis/jis667) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23105145 [CrossRef](/lookup/external-ref?access_num=10.1093/infdis/jis667&link_type=DOI) [PubMed](/lookup/external-ref?access_num=23105145&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 60. Fenton-May AE , Dibben O , Emmerich T , et al . Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 2013;10:146.[doi:10.1186/1742-4690-10-146](http://dx.doi.org/10.1186/1742-4690-10-146) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24299076 [CrossRef](/lookup/external-ref?access_num=10.1186/1742-4690-10-146&link_type=DOI) [PubMed](/lookup/external-ref?access_num=24299076&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 61. Krown SE , Li P , Von Roenn JH , et al . Efficacy of low-dose interferon with antiretroviral therapy in Kaposi's sarcoma: a randomized phase II AIDS clinical trials group study. J Interferon Cytokine Res 2002;22:295–303.[doi:10.1089/107999002753675712](http://dx.doi.org/10.1089/107999002753675712) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12034036 [CrossRef](/lookup/external-ref?access_num=10.1089/107999002753675712&link_type=DOI) [PubMed](/lookup/external-ref?access_num=12034036&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 62. Shepherd FA , Beaulieu R , Gelmon K , et al . Prospective randomized trial of two dose levels of interferon alfa with zidovudine for the treatment of Kaposi's sarcoma associated with human immunodeficiency virus infection: a Canadian HIV clinical trials network study. J Clin Oncol 1998;16:1736–42.[doi:10.1200/JCO.1998.16.5.1736](http://dx.doi.org/10.1200/JCO.1998.16.5.1736) pmid:http://www.ncbi.nlm.nih.gov/pubmed/9586886 [Abstract](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjk6IjE2LzUvMTczNiI7czo0OiJhdG9tIjtzOjE4OiIvamltLzcwLzQvODgzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 63. Kirkwood J . Cancer immunotherapy: the interferon-alpha experience. Semin Oncol 2002;29:18–26.[doi:10.1053/sonc.2002.33078](http://dx.doi.org/10.1053/sonc.2002.33078) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12068384 [CrossRef](/lookup/external-ref?access_num=10.1053/sonc.2002.35644&link_type=DOI) [PubMed](/lookup/external-ref?access_num=12068384&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 64. Krown SE . AIDS-associated Kaposi's sarcoma: is there still a role for interferon alfa? Cytokine Growth Factor Rev 2007;18:395–402.[doi:10.1016/j.cytogfr.2007.06.005](http://dx.doi.org/10.1016/j.cytogfr.2007.06.005) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17656146 [CrossRef](/lookup/external-ref?access_num=10.1016/j.cytogfr.2007.06.005&link_type=DOI) [PubMed](/lookup/external-ref?access_num=17656146&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 65. Gauthier J , Yakoub-Agha I . Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: clinical data to date, current limitations and perspectives. Curr Res Transl Med 2017;65:93–102.[doi:10.1016/j.retram.2017.08.003](http://dx.doi.org/10.1016/j.retram.2017.08.003) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28988742 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 66. Brudno JN , Kochenderfer JN . Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 2019;34:45–55.[doi:10.1016/j.blre.2018.11.002](http://dx.doi.org/10.1016/j.blre.2018.11.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30528964 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 67. Ali N , FCPS Haematology . Chimeric antigen T cell receptor treatment in hematological malignancies. Blood Res 2019;54:81–3.[doi:10.5045/br.2019.54.2.81](http://dx.doi.org/10.5045/br.2019.54.2.81) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31309082 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 68. Frey N , Porter D . Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant 2019;25:e123–7.[doi:10.1016/j.bbmt.2018.12.756](http://dx.doi.org/10.1016/j.bbmt.2018.12.756) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30586620 [CrossRef](/lookup/external-ref?access_num=10.1016/j.bbmt.2018.12.756&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 69. Wagner TA . Quarter century of anti-HIV CAR T cells. Curr HIV/AIDS Rep 2018;15:147–54.[doi:10.1007/s11904-018-0388-x](http://dx.doi.org/10.1007/s11904-018-0388-x) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29500712 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 70. Rust BJ , Kiem H-P , Uldrick TS . CAR T-cell therapy for cancer and HIV through novel approaches to HIV-associated haematological malignancies. Lancet Haematol 2020;7:e690–6.[doi:10.1016/S2352-3026(20)30142-3](http://dx.doi.org/10.1016/S2352-3026(20)30142-3) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32791043 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 71. Shimabukuro-Vornhagen A , Gödel P , Subklewe M , et al . Cytokine release syndrome. J Immunother Cancer 2018;6:56.[doi:10.1186/s40425-018-0343-9](http://dx.doi.org/10.1186/s40425-018-0343-9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29907163 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaml0YyI7czo1OiJyZXNpZCI7czo2OiI2LzEvNTYiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 72. Hayden PJ , Sirait T , Koster L , et al . An international survey on the management of patients receiving CAR T-cell therapy for haematological malignancies on behalf of the Chronic Malignancies Working Party of EBMT. Curr Res Transl Med 2019;67:79–88.[doi:10.1016/j.retram.2019.05.002](http://dx.doi.org/10.1016/j.retram.2019.05.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31182380 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 73. Abramson JS , Irwin KE , Frigault MJ , et al . Successful anti-CD19 CAR T-cell therapy in HIV-infected patients with refractory high-grade B-cell lymphoma. Cancer 2019;125:3692–8.[doi:10.1002/cncr.32411](http://dx.doi.org/10.1002/cncr.32411) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31503324 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 74. Abbasi A , Peeke S , Shah N , et al . Axicabtagene ciloleucel CD19 CAR-T cell therapy results in high rates of systemic and neurologic remissions in ten patients with refractory large B cell lymphoma including two with HIV and viral hepatitis. J Hematol Oncol 2020;13:1.[doi:10.1186/s13045-019-0838-y](http://dx.doi.org/10.1186/s13045-019-0838-y) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31900191 [CrossRef](/lookup/external-ref?access_num=10.1186/s13045-020-00968-1&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 75. Allred J , Bharucha K , Özütemiz C , et al . Chimeric antigen receptor T-cell therapy for HIV-associated diffuse large B-cell lymphoma: case report and management recommendations. Bone Marrow Transplant 2021;56:679–82.[doi:10.1038/s41409-020-01018-7](http://dx.doi.org/10.1038/s41409-020-01018-7) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32764581 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 76. Gaughan EM , Dezube BJ , Bower M , et al . HIV-associated bladder cancer: a case series evaluating difficulties in diagnosis and management. BMC Urol 2009;9:10.[doi:10.1186/1471-2490-9-10](http://dx.doi.org/10.1186/1471-2490-9-10) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19719844 [CrossRef](/lookup/external-ref?access_num=10.1186/1471-2490-9-10&link_type=DOI) [PubMed](/lookup/external-ref?access_num=19719844&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 77. Alhunaidi O , Zlotta AR . The use of intravesical BCG in urothelial carcinoma of the bladder. Ecancermedicalscience 2019;13:905.[doi:10.3332/ecancer.2019.905](http://dx.doi.org/10.3332/ecancer.2019.905) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30915163 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 78. Golla V , Lenis AT , Faiena I , et al . Intravesical therapy for non-muscle invasive bladder Cancer-Current and future options in the age of Bacillus Calmette-Guerin shortage. Rev Urol 2019;21:145–53.pmid:http://www.ncbi.nlm.nih.gov/pubmed/32071562 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 79. Fuge O , Vasdev N , Allchorne P , et al . Immunotherapy for bladder cancer. Res Rep Urol 2015;7:65–79.[doi:10.2147/RRU.S63447](http://dx.doi.org/10.2147/RRU.S63447) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26000263 [PubMed](/lookup/external-ref?access_num=26000263&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 80. Pérez-Jacoiste Asín MA , Fernández-Ruiz M , López-Medrano F , et al . Bacillus Calmette-Guérin (BCG) infection following intravesical BCG administration as adjunctive therapy for bladder cancer: incidence, risk factors, and outcome in a single-institution series and review of the literature. Medicine 2014;93:236–54.[doi:10.1097/MD.0000000000000119](http://dx.doi.org/10.1097/MD.0000000000000119) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25398060 [CrossRef](/lookup/external-ref?access_num=10.1097/MD.0000000000000119&link_type=DOI) [PubMed](/lookup/external-ref?access_num=25398060&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 81. Palou J , Angerri O , Segarra J , et al . Intravesical Bacillus calmette-guèrin for the treatment of superficial bladder cancer in renal transplant patients. Transplantation 2003;76:1514–6.[doi:10.1097/01.TP.0000090748.32764.0F](http://dx.doi.org/10.1097/01.TP.0000090748.32764.0F) pmid:http://www.ncbi.nlm.nih.gov/pubmed/14657696 [PubMed](/lookup/external-ref?access_num=14657696&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 82. Yossepowitch O , Eggener SE , Bochner BH , et al . Safety and efficacy of intravesical Bacillus Calmette-Guerin instillations in steroid treated and immunocompromised patients. J Urol 2006;176:482–5.[doi:10.1016/j.juro.2006.03.066](http://dx.doi.org/10.1016/j.juro.2006.03.066) pmid:http://www.ncbi.nlm.nih.gov/pubmed/16813873 [CrossRef](/lookup/external-ref?access_num=10.1016/j.juro.2006.03.066&link_type=DOI) [PubMed](/lookup/external-ref?access_num=16813873&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=000239018400016&link_type=ISI) 83. Nuttall JJC , Eley BS . Bcg vaccination in HIV-infected children. Tuberc Res Treat 2011;2011:712736.[doi:10.1155/2011/712736](http://dx.doi.org/10.1155/2011/712736) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22567268 [PubMed](/lookup/external-ref?access_num=22567268&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 84. Toida I . [HIV-infection, AIDS and BCG vaccination]. Kekkaku 1993;68:435–44.pmid:http://www.ncbi.nlm.nih.gov/pubmed/8341039 [PubMed](/lookup/external-ref?access_num=8341039&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 85. Vegt PDJ , van der Meijden APM , Sylvester R , et al . Does isoniazid reduce side effects of intravesical Bacillus Calmette-Guerin therapy in superficial bladder cancer? interim results of European organization for research and treatment of cancer protocol 30911. Journal of Urology 1997;157:1246–9.[doi:10.1016/S0022-5347(01)64936-X](http://dx.doi.org/10.1016/S0022-5347(01)64936-X) [CrossRef](/lookup/external-ref?access_num=10.1016/S0022-5347(01)64936-X&link_type=DOI) [PubMed](/lookup/external-ref?access_num=9120912&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=A1997WN12900015&link_type=ISI) 86. Al Khalifa M , Elfving P , Månsson W , et al . The effect of isoniazid on BCG-induced toxicity in patients with superficial bladder cancer. Eur Urol 2000;37 Suppl 1:26–30.[doi:10.1159/000052379](http://dx.doi.org/10.1159/000052379) pmid:http://www.ncbi.nlm.nih.gov/pubmed/10575269 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 87. Kristjansson M , Green P , Manning HL , et al . Molecular confirmation of Bacillus Calmette-Guérin as the cause of pulmonary infection following urinary tract instillation. Clin Infect Dis 1993;17:228–30.[doi:10.1093/clinids/17.2.228](http://dx.doi.org/10.1093/clinids/17.2.228) pmid:http://www.ncbi.nlm.nih.gov/pubmed/8104511 [CrossRef](/lookup/external-ref?access_num=10.1093/clinids/17.2.228&link_type=DOI) [PubMed](/lookup/external-ref?access_num=8104511&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 88. Anassi E , Ndefo UA , Sipuleucel-T NUA . Sipuleucel-T (Provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T 2011;36:197–202. [PubMed](/lookup/external-ref?access_num=21572775&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 89. Pieczonka CM , Telonis D , Mouraviev V , et al . Sipuleucel-T for the treatment of patients with metastatic castrate-resistant prostate cancer: considerations for clinical practice. Rev Urol 2015;17:203–10.pmid:http://www.ncbi.nlm.nih.gov/pubmed/26839517 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 90. Kantoff PW , Higano CS , Shore ND , et al . Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363:411–22.[doi:10.1056/NEJMoa1001294](http://dx.doi.org/10.1056/NEJMoa1001294) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20818862 [CrossRef](/lookup/external-ref?access_num=10.1056/NEJMoa1001294&link_type=DOI) [PubMed](/lookup/external-ref?access_num=20818862&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=000280411300005&link_type=ISI) 91. Higano CS , Armstrong AJ , Sartor AO , et al . Real-world outcomes of sipuleucel-T treatment in proceed, a prospective registry of men with metastatic castration-resistant prostate cancer. Cancer 2019;125:4172–80.[doi:10.1002/cncr.32445](http://dx.doi.org/10.1002/cncr.32445) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31483485 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 92. Caram MEV , Ross R , Lin P , et al . Factors associated with use of Sipuleucel-T to treat patients with advanced prostate cancer. JAMA Netw Open 2019;2:e192589.[doi:10.1001/jamanetworkopen.2019.2589](http://dx.doi.org/10.1001/jamanetworkopen.2019.2589) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31002323 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 93. Handy CE , Antonarakis ES . Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol 2018;14:907–17.[doi:10.2217/fon-2017-0531](http://dx.doi.org/10.2217/fon-2017-0531) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29260582 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 94. Achard C , Surendran A , Wedge M-E , et al . Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 2018;31:17–24.[doi:10.1016/j.ebiom.2018.04.020](http://dx.doi.org/10.1016/j.ebiom.2018.04.020) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29724655 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 95. Conry RM , Westbrook B , McKee S , et al . Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother 2018;14:839–46.[doi:10.1080/21645515.2017.1412896](http://dx.doi.org/10.1080/21645515.2017.1412896) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29420123 [CrossRef](/lookup/external-ref?access_num=10.1080/21645515.2017.1412896&link_type=DOI) [PubMed](/lookup/external-ref?access_num=29420123&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 96. Lawler SE , Speranza M-C , Cho C-F , et al . Oncolytic viruses in cancer treatment: a review. JAMA Oncol 2017;3:841–9.[doi:10.1001/jamaoncol.2016.2064](http://dx.doi.org/10.1001/jamaoncol.2016.2064) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27441411 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 97. Reale A , Vitiello A , Conciatori V , et al . Perspectives on immunotherapy via oncolytic viruses. Infect Agent Cancer 2019;14:5.[doi:10.1186/s13027-018-0218-1](http://dx.doi.org/10.1186/s13027-018-0218-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30792754 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 98. Raja J , Ludwig JM , Gettinger SN , et al . Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer 2018;6:140.[doi:10.1186/s40425-018-0458-z](http://dx.doi.org/10.1186/s40425-018-0458-z) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30514385 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaml0YyI7czo1OiJyZXNpZCI7czo3OiI2LzEvMTQwIjtzOjQ6ImF0b20iO3M6MTg6Ii9qaW0vNzAvNC84ODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 99. Andtbacka RHI , Kaufman HL , Collichio F , et al . Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015;33:2780–8.[doi:10.1200/JCO.2014.58.3377](http://dx.doi.org/10.1200/JCO.2014.58.3377) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26014293 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIzMy8yNS8yNzgwIjtzOjQ6ImF0b20iO3M6MTg6Ii9qaW0vNzAvNC84ODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 100. Macedo N , Miller DM , Haq R , et al . Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer 2020;8:e001486.[doi:10.1136/jitc-2020-001486](http://dx.doi.org/10.1136/jitc-2020-001486) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33046622 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaml0YyI7czo1OiJyZXNpZCI7czoxMToiOC8yL2UwMDE0ODYiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 101. Russell SJ , Peng K-W , Bell JC . Oncolytic virotherapy. Nat Biotechnol 2012;30:658–70.[doi:10.1038/nbt.2287](http://dx.doi.org/10.1038/nbt.2287) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22781695 [CrossRef](/lookup/external-ref?access_num=10.1038/nbt.2287&link_type=DOI) [PubMed](/lookup/external-ref?access_num=22781695&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 102. Argyriou AA , Kalofonos HP . Recent advances relating to the clinical application of naked monoclonal antibodies in solid tumors. Mol Med 2009;15:183–91.[doi:10.2119/molmed.2009.00007](http://dx.doi.org/10.2119/molmed.2009.00007) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19305491 [PubMed](/lookup/external-ref?access_num=19305491&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 103. Corraliza-Gorjón I , Somovilla-Crespo B , Santamaria S , et al . New strategies using antibody combinations to increase cancer treatment effectiveness. Front Immunol 2017;8:8.[doi:10.3389/fimmu.2017.01804](http://dx.doi.org/10.3389/fimmu.2017.01804) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29312320 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 104. Rafailidis PI , Kakisi OK , Vardakas K , et al . Infectious complications of monoclonal antibodies used in cancer therapy: a systematic review of the evidence from randomized controlled trials. Cancer 2007;109:2182–9.[doi:10.1002/cncr.22666](http://dx.doi.org/10.1002/cncr.22666) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17429839 [CrossRef](/lookup/external-ref?access_num=10.1002/cncr.22666&link_type=DOI) [PubMed](/lookup/external-ref?access_num=17429839&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) [Web of Science](/lookup/external-ref?access_num=000246679100004&link_type=ISI) 105. Noy A , Lee JY , Cesarman E , et al . Amc 048: modified CODOX-M/IVAC-rituximab is safe and effective for HIV-associated Burkitt lymphoma. Blood 2015;126:160–6.[doi:10.1182/blood-2015-01-623900](http://dx.doi.org/10.1182/blood-2015-01-623900) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25957391 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czo5OiIxMjYvMi8xNjAiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 106. Re A , Cattaneo C , Montoto S . Treatment management of haematological malignancies in people living with HIV. Lancet Haematol 2020;7:e679–89.[doi:10.1016/S2352-3026(20)30115-0](http://dx.doi.org/10.1016/S2352-3026(20)30115-0) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32791044 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 107. Kaplan LD , Lee JY , Ambinder RF , et al . Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium trial 010. Blood 2005;106:1538–43.[doi:10.1182/blood-2005-04-1437](http://dx.doi.org/10.1182/blood-2005-04-1437) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15914552 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMDoiMTA2LzUvMTUzOCI7czo0OiJhdG9tIjtzOjE4OiIvamltLzcwLzQvODgzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 108. Barta SK , Xue X , Wang D , et al . Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: a pooled analysis of 1546 patients. Blood 2013;122:3251–62.[doi:10.1182/blood-2013-04-498964](http://dx.doi.org/10.1182/blood-2013-04-498964) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24014242 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTIyLzE5LzMyNTEiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 109. Pria AD , Pinato D , Roe J , et al . Relapse of HHV8-positive multicentric Castleman disease following rituximab-based therapy in HIV-positive patients. Blood 2017;129:2143–7.[doi:10.1182/blood-2016-10-747477](http://dx.doi.org/10.1182/blood-2016-10-747477) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28143881 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTI5LzE1LzIxNDMiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 110. Gérard L , Michot J-M , Burcheri S , et al . Rituximab decreases the risk of lymphoma in patients with HIV-associated multicentric Castleman disease. Blood 2012;119:2228–33.[doi:10.1182/blood-2011-08-376012](http://dx.doi.org/10.1182/blood-2011-08-376012) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22223822 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTE5LzEwLzIyMjgiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 111. Uldrick TS , Wyvill KM , Kumar P , et al . Phase II study of bevacizumab in patients with HIV-associated Kaposi's sarcoma receiving antiretroviral therapy. J Clin Oncol 2012;30:1476–83.[doi:10.1200/JCO.2011.39.6853](http://dx.doi.org/10.1200/JCO.2011.39.6853) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22430271 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIzMC8xMy8xNDc2IjtzOjQ6ImF0b20iO3M6MTg6Ii9qaW0vNzAvNC84ODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 112. Ramaswami R , Uldrick TS , Polizzotto MN , et al . A pilot study of liposomal doxorubicin combined with bevacizumab followed by bevacizumab monotherapy in patients with advanced Kaposi sarcoma. Clin Cancer Res 2019;25:4238–47.[doi:10.1158/1078-0432.CCR-18-3528](http://dx.doi.org/10.1158/1078-0432.CCR-18-3528) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30979736 [Abstract/FREE Full Text](/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjI1LzE0LzQyMzgiO3M6NDoiYXRvbSI7czoxODoiL2ppbS83MC80Lzg4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 113. Ablanedo-Terrazas Y , Alvarado-de la Barrera C , Ormsby CE , et al . Intralesional bevacizumab in patients with human immunodeficiency virus-associated Kaposi's sarcoma in the upper airway. Laryngoscope 2015;125:E132–7.[doi:10.1002/lary.24988](http://dx.doi.org/10.1002/lary.24988) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25345840 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 114. Magné N , Chargari C , Levy A , et al . Bevacizumab in HIV-positive patients: concerns about safety and potential for therapeutic use. J Chemother 2014;26:253–5.[doi:10.1179/1973947813Y.0000000109](http://dx.doi.org/10.1179/1973947813Y.0000000109) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24090564 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 115. Berretta M , Lleshi A , Zanet E , et al . Bevacizumab plus irinotecan-, fluorouracil-, and leucovorin-based chemotherapy with concomitant HAART in an HIV-positive patient with metastatic colorectal cancer. Onkologie 2008;31:394–7.[doi:10.1159/000132360](http://dx.doi.org/10.1159/000132360) pmid:http://www.ncbi.nlm.nih.gov/pubmed/18596388 [PubMed](/lookup/external-ref?access_num=18596388&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 116. Baraboutis IG , Papastamopoulos V , Charitsis G , et al . First-Time use of bevacizumab for aggressive, metastatic hepatocellular carcinoma in an HIV/hepatitis B virus coinfected patient: a case report. Eur J Gastroenterol Hepatol 2008;20:472–3.[doi:10.1097/MEG.0b013e3282f16411](http://dx.doi.org/10.1097/MEG.0b013e3282f16411) pmid:http://www.ncbi.nlm.nih.gov/pubmed/18403951 [PubMed](/lookup/external-ref?access_num=18403951&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 117. Berretta M , Martellotta F , Simonelli C , et al . Cetuximab/targeted chemotherapy in an HIV-positive patient with metastatic colorectal cancer in the HAART era: a case report. J Chemother 2007;19:343–6.[doi:10.1179/joc.2007.19.3.343](http://dx.doi.org/10.1179/joc.2007.19.3.343) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17594933 [PubMed](/lookup/external-ref?access_num=17594933&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 118. Rasmussen TA , McMahon J , Chang JJ , et al . Impact of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy with Sezary syndrome. AIDS 2017;31:1839–45.[doi:10.1097/QAD.0000000000001540](http://dx.doi.org/10.1097/QAD.0000000000001540) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28514279 [CrossRef](/lookup/external-ref?access_num=10.1097/QAD.0000000000001540&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 119. Shah NN , Singavi AK , Harrington A . Daratumumab in primary effusion lymphoma. N Engl J Med 2018;379:689–90.[doi:10.1056/NEJMc1806295](http://dx.doi.org/10.1056/NEJMc1806295) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30110586 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 120. Singh SN , Zhu Y , Chumsri S , et al . Outcomes and chemotherapy-related toxicity in HIV-infected patients with breast cancer. Clin Breast Cancer 2014;14:e53–9.[doi:10.1016/j.clbc.2013.11.002](http://dx.doi.org/10.1016/j.clbc.2013.11.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24418743 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 121. Sassoon I , Blanc V . Antibody-Drug conjugate (ADC) clinical pipeline: a review. Methods Mol Biol 2013;1045:1–27.[doi:10.1007/978-1-62703-541-5_1](http://dx.doi.org/10.1007/978-1-62703-541-5_1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23913138 [CrossRef](/lookup/external-ref?access_num=10.1007/978-1-62703-541-5_1&link_type=DOI) [PubMed](/lookup/external-ref?access_num=23913138&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 122. Weiner LM , Dhodapkar MV , Ferrone S . Monoclonal antibodies for cancer immunotherapy. Lancet 2009;373:1033–40.[doi:10.1016/S0140-6736(09)60251-8](http://dx.doi.org/10.1016/S0140-6736(09)60251-8) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19304016 [CrossRef](/lookup/external-ref?access_num=10.1016/S0140-6736(09)60251-8&link_type=DOI) [PubMed](/lookup/external-ref?access_num=19304016&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 123. Yi JH , Kim SJ , Kim WS , JH Y , Kim WS . Brentuximab vedotin: clinical updates and practical guidance. Blood Res 2017;52:243–53.[doi:10.5045/br.2017.52.4.243](http://dx.doi.org/10.5045/br.2017.52.4.243) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29333400 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 124. Thomas A , Teicher BA , Hassan R . Antibody-drug conjugates for cancer therapy. Lancet Oncol 2016;17:e254–62.[doi:10.1016/S1470-2045(16)30030-4](http://dx.doi.org/10.1016/S1470-2045(16)30030-4) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27299281 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 125. Rubinstein PG , Moore PC , Rudek MA , et al . Brentuximab vedotin with AVD shows safety, in the absence of strong CYP3A4 inhibitors, in newly diagnosed HIV-associated Hodgkin lymphoma. AIDS 2018;32:605–11.[doi:10.1097/QAD.0000000000001729](http://dx.doi.org/10.1097/QAD.0000000000001729) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29280762 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 126. Dahlén E , Veitonmäki N , Norlén P . Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 2018;6:3–17.[doi:10.1177/2515135518763280](http://dx.doi.org/10.1177/2515135518763280) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29998217 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 127. Sedykh S , Prinz V , Buneva V , et al . Therapy, perspectives. Drug Des Devel Ther 2018;12:195–208.[doi:10.2147/DDDT.S151282](http://dx.doi.org/10.2147/DDDT.S151282) [CrossRef](/lookup/external-ref?access_num=10.2147/DDDT.S151282&link_type=DOI) [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom) 128.FDA. Fda grants accelerated approval to amivantamab for metastatic non-small cell lung cancer, 2021. 129. Bender Ignacio R , Ddungu H , Uldrick TS . Untangling the effects of chemotherapy and HIV on CD4 Counts-Implications for immunotherapy in HIV and cancer. JAMA Oncol 2020;6:235–6.[doi:10.1001/jamaoncol.2019.4634](http://dx.doi.org/10.1001/jamaoncol.2019.4634) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31804653 [PubMed](/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjim%2F70%2F4%2F883.atom)