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ABSTRACT
Psoriasis is an autoimmune disease, which is
characterized by aberrantly high levels of
inflammation, but the underlying pathogenic
mechanisms are still not fully understood. Signal
transducer and activator of transcription 1 (STAT1)
and STAT3, and the downstream proteins suppressor
of cytokine signaling 1 (SOCS1) and SOCS3, have
been implicated in psoriasis disease progression.
Calcipotriol, a synthetic derivative of vitamin D, has
been used clinically to treat psoriasis, but the
mechanism of action that underlies the beneficial
effects of calcipotriol is still being explored. The
objective of this study was to determine whether
STAT1 and STAT3 signaling is involved in calcipotriol
treatment. Using an in vitro immortal human
keratinocyte cell line, HaCaT cells, as a psoriasis
model, we examined the molecular signaling
induced by calcipotriol treatment. We found that
calcipotriol treatment or silencing of either STAT1 or
STAT3 inhibited proliferation of HaCaT cells.
Calcipotriol downregulated the expression of STAT1
and STAT3 at the messenger RNA (mRNA) and
protein levels. The levels of phosphorylated STAT1
and STAT3 were also decreased, suggesting
calcipotriol treatment inhibited STAT1 and STAT3
activation. Calcipotriol-mediated STAT inhibition was
further substantiated by the downregulation of
SOCS1 and SOCS3 at the mRNA and protein
expression levels. Taken together, our results
suggest a novel molecular mechanism for
calcipotriol-mediated treatment effects in psoriasis.

INTRODUCTION
Psoriasis is a chronic inflammatory skin disease
characterized by epidermal hyperplasia and
altered keratinocyte differentiation.1 Psoriasis
affects ∼0.1–3% of the population worldwide.2

Common treatments for psoriasis include
topical, systemic, phototherapy, combination,
and herbal therapy treatments that inhibit
excessive keratinocyte proliferation.3 Despite
the fact multiple psoriasis therapies are avail-
able, no cure has been developed to date, and
the relapsing–remitting nature of psoriasis
adversely effects patient quality of life.4 5

Although considerable evidence indicates
psoriasis is immunologically mediated and has
a complex genetic basis, the basic pathogenic
mechanisms have not yet been fully elucidated.6–8

Owing to the lack of a widely accepted animal
model, our understanding of psoriasis pathogen-
esis is primarily derived from clinical studies and
translational science conducted in patients.9

Histological examinations indicate that abnormal
angiogenesis and inflammatory infiltrates are
closely related to the pathogenesis of psoriasis.6 10

There is a complex interplay between dendritic
cells, T cells, and keratinocytes that results in
chronic skin inflammation in psoriasis. These
cells produce cytokines such as, tumor necrosis
factor, interferons (IFNs), interleukin-6 (IL-6),
IL-23, and IL-17, in the psoriatic lesions that play
important roles in disease progression.11 12 Signal
transducer and activator of transcription (STAT)
signaling downstream of IFNs and IL-6 has been
implicated in psoriasis.13 14 In psoriatic skin
lesions, expression and activation of STAT1 and
STAT3 has been documented, and in vitro in
normal human keratinocytes IFNs and IL-6
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induce STAT1 and STAT3 activation, respectively.15 16 In add-
ition, keratin 17, which is regarded as a hallmark of psoriasis
because it is strongly expressed in psoriatic lesions but not in
normal skin, is upregulated in keratinocytes by IL-17A
through STAT1-dependent and STAT3-dependent mechan-
isms.17 Transgenic mice that express constitutively active
STAT3 in their keratinocytes develop a skin phenotype spon-
taneously, and in response to wounding, that closely resem-
bles psoriasis.18 Given the role of STATs in the development
of psoriasis, the feasibility of inhibiting the upstream Janus
kinases ( JAK) to prevent STATactivation has been extensively
tested as a novel therapeutic strategy.19 20

Calcipotriol is a vitamin D3 analog that is used as a
topical treatment for psoriasis alone or in combination
with betamethasome.21 22 Calcipotriol inhibits proliferation
and normalizes keratinocyte differentiation by targeting the
vitamin D receptor expressed on the keratinocytes in the
lower epidermis.23 Information regarding the molecular
mediators underlying the mechanism of action of calcipo-
triol in psoriasis is still limited. In the HaCaT keratinocyte
cell line and in primary human keratinocytes, the antiproli-
ferative effect of calcipotriol was accompanied by an
increase in sphingomyelin hydrolysis and the antiprolifera-
tive lipid, ceramide.24 25 In the presence of extracellular
calcium, calcipotriol mediated the dephosphorylation of
the epidermal growth factor receptor, which might be the
mechanism underlying the inhibition of cell proliferation in
HaCaT cells.26

To date, a possible role for signaling mediated by STAT1
and STAT3 in the pharmacological action of calcipotriol
has not yet been investigated. The aim of this study was
to identify the signaling molecules that mediate the
calcipotriol-induced inhibition of cell proliferation in
HaCaT cells.

MATERIALS AND METHODS
Cells and reagents
The HaCaT cell line was obtained from the Shanghai Cell
Bank, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences (Shanghai, China). Calcipotriol was
purchased from Sigma-Aldrich (St. Louis, Missouri, USA).
The CellTiter 96 AQueous One Solution Cell Proliferation
Assay (MTS) was purchased from Promega (Madison,
Wisconsin, USA). STAT1, STAT3, phosphorylated STAT1
(p-STAT1), p-STAT3, suppressor of cytokine signaling 1
(SOCS1), SOCS3, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) antibodies were purchased from
ebioe (Guangzhou, China). Horseradish peroxidase
(HRP)-conjugated secondary antibodies were purchased
from Boster Biological Technology (Wuhan, China).

Calcipotriol treatment
HaCaT cells were cultured in Dulbecco’s Modified Eagle’s
Minimal essential medium with 10% fetal bovine serum
(Hyclone, USA) at 37°C in a 5% CO2 humidified environ-
ment. HaCaT cells were collected during the logarithmic
growth phase and aliquoted in a 96-well plate (1×104 cells/
well). The cells were treated with 10 nM calcipotriol or
left untreated (control group). The cells were allowed to
grow overnight and then the culture medium was replaced
with fresh medium containing 10 nM calcipotriol, an

equivalent volume of fresh media was replaced in the
control group.

MTS assay
After treatment, 10 mL of MTS solution (Promega, USA)
was added into each well and the plate was incubated at 37
°C for 4 hours. The optical density was determined at
490 nm using a quantitative automatic microplate reader
(Multiskan MK3, Thermo Fisher Scientific).

Downregulation of STAT1 and STAT3
HaCaT cells were transfected with 50 nM small interfering
RNA (siRNA) oligonucleotides (Sigma-Aldrich) for human
STAT1 and STAT3 or negative control (NC)-siRNA by
using Lipofectamine RNAiMAX Transfection Reagent
(Invitrogen). The siRNA sequences were: STAT1-siRNA
(SASI_Hs02_00343388), forward-50-CUGUGAAGUUGAG
ACUGUUdTdT-30 and reverse-50-AACAGUCUCAACUUCA
CAGdTdT-30; STAT3-siRNA (SASI_Hs01_00121206),
forward-50-GGAUAACGUCAUUAGCAGAdTdT-30 and reverse-
50-UCUGCUAAUGACGUUAUCCdTdT-30; NC-siRNA,
forward-50-UUCUCCGAACGUGUCACGUTT-30 and reverse-
50-ACGUGACACGUUCGGAGAATT-30.

RNA isolation, reverse-transcription PCR (RT-PCR), and
real-time quantitative PCR (RT-qPCR)
RNA was isolated from each cell sample using TRIzol
(Invitrogen, California, USA) according to the manufac-
turer’s protocol. A 1 μg aliquot of total RNA from every
sample was used for complementary DNA (cDNA) synthe-
sis using the First-Strand cDNA Synthesis Kit (Beijing
ComWin Biotech, China). RT-qPCR was performed using
SYBR Green qPCR SuperMix (Invitrogen, California, USA)
and analyzed on an Applied Biosystems ViiA 7 Real-Time
PCR System (Life Technologies, USA). β-actin (ACTB) was
used as an internal control. The difference in the real-time
PCR cycle number (Ct value) between the target gene and
ACTB was quantified using the ΔΔCt method. All commer-
cially available kits were used according to the manufac-
turer’s protocol.

Western blot analyses
Western blotting was performed according to standard pro-
tocols. Briefly, cells were harvested and lysed in a lysis
buffer containing a cocktail of protease inhibitors. After
centrifugation at 14000 rpm for 15 min at 4°C, superna-
tants were collected, mixed with sample buffer containing
dithiothreitol, and boiled for 8 min. Equal amounts of
proteins were separated by standard sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to polyvinylidenedifluoride (PVDF) membranes.
The membranes were blocked with 10% skim milk for
2 hours or overnight, incubated with the primary antibody
for 1.5 hours, and incubated with the secondary antibody
for 1 hours. The blots were washed and the proteins were
visualized by chemiluminescence. Primary antibodies (all
purchased from Abcam) against STAT1 (rabbit polyclonal,
Cat. number ab31369, 1:500–1:1000 dilution), STAT3
(Rabbit polyclonal, Cat. number ab31370, 1:500–1:1000
dilution), p-STAT1 (Tyr-701) (rabbit polyclonal, Cat.
number ab30645, 1:500–1:1000 dilution), and p-STAT3
(Ser-727) (rabbit polyclonal, Cat. number ab30647, 1:500–
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1:1000 dilution) were used. The films were developed and
scanned. The Western blot images were then analyzed
using an UVIpro Gel documentation and analysis system
(UVItec, UK). GAPDH was used as an internal control.

Statistical analyses
At least three independent experiments were performed,
and all experiments were performed in at least triplicate.
Data are presented as the mean±SD and analyzed with
SPSS statistical software (V.13.0; SPSS, Chicago, Illinois,
USA). One-way analysis of variance was used for mean com-
parisons. The p<0.05 was considered statistically
significant.

RESULTS
Effect of calcipotriol and STAT1/3 silencing on
proliferation of HaCaT cells
To determine the effect of calcipotriol treatment or the
role of STAT1 and STAT3 on HaCaT cells, we used the
MTS assay to quantify cellular proliferation. As shown in

figure 1A, HaCaT cells in the control group (without calci-
potriol treatment) proliferated according to the culture
time. However, calcipotriol significantly (p<0.05) reduced
the amount of cell proliferation compared with the control
group (vehicle control) in a time-dependent manner, sug-
gesting an antiproliferative effect in HaCaT cells.
Furthermore, we silenced the expression of STAT1 or
STAT3 using siRNA in HaCaT cells (figure 1B), and the
silenced cells were subjected to MTS assay to determine
the time-dependent proliferation (figure 1C). We found sig-
nificant proliferation inhibition of STAT1-siRNA or
STAT3-siRNA transfected HaCaT cells. The results sug-
gested the indispensable role of STAT1 and STAT3 in the
proliferation of HaCaT cells.

Effect of calcipotriol on STAT1 and STAT3 messenger
RNA (mRNA) and protein expression in HaCaT cells
Given that STAT1 and STAT3 signaling has been implicated
as a potentially new therapeutic target for psoriasis,13 we
sought to determine whether STAT1 and STAT3 were
involved in the antiproliferative effect of calcipotriol in
HaCaT cells. To determine whether calcipotriol treatment
affects STAT1 and STAT3 expression, we first examined the
STAT1 and STAT3 mRNA expression levels by RT-qPCR
analysis. As shown in figure 2A, B, the expression levels of
STAT1 and STAT3 were significantly reduced in calcipotriol-
treated HaCaT cells (p<0.05).

Moreover, Western blot analysis showed that the expres-
sion of p-STAT1, STAT1, p-STAT3, and STAT3 were all
downregulated by calcipotriol treatment (figures 3A and 4A).
To see whether the downregulation of p-STAT1 and p-STAT3
was direct or secondary effects of calcipotriol treatment, the
mean density ratios of p-STAT1 and p-STAT3 relative to total
protein were calculated (figures 3B and 4B). Results showed a
significant (p<0.05) downregulated p-STAT3/STAT3 ratio but
not p-STAT1/STAT1 in calcipotriol-treated HaCaT cells. As
shown in figure 3C–D and figure 4C–D, calcipotriol treat-
ment significantly decreased the mean density ratio of
p-STAT1, STAT1, p-STAT3, and STAT3 relative to GAPDH
compared with the ratio in the control group (p<0.05).
Together, these results suggest that calcipotriol might regulate
STAT1 and STAT3 transcriptionally, post-transcriptionally,
and post-translationally.

Figure 1 Calcipotriol or STAT1 and STAT3 silencing reduced
proliferation in HaCaT cells. (A) HaCaT cells were treated with
10 nM calcipotriol for the indicated time. Cell proliferation was
determined using the MTS assay; the absorbance at 490 nm was
recorded. *p<0.05 compared with control. (B) HaCaT cells were
transfected with 50 nM of STAT1-siRNA, STAT3-siRNA, or
NC-siRNA for 24 hours. Total protein was harvested for Western
blot analysis to determine STAT1, STAT3, and GAPDH protein
expression levels. GAPDH was the internal control. (C) HaCaT cells
were transfected with 50 nM of STAT1-siRNA, STAT3-siRNA, or
NC-siRNA for the indicated time. Cell proliferation was
determined using the MTS assay, the per cent of proliferation
inhibition was calculated as (1- mean proliferation of treated
group/mean proliferation of NC-siRNA group)×100. *p<0.05
compared with 0 hours. NC, negative control; siRNA, small
interfering RNA; STAT1, signal transducer and activator of
transcription 1.

Figure 2 Calcipotriol reduced mRNA expression of STAT1 and
STAT3. HaCaT cells were treated with 10 nM calcipotriol for
48 hours. Total mRNA was extracted and used for RT-PCR and
RT-qPCR to determine STAT1 (A) and STAT3 (B) mRNA expression
levels. Results were calculated with ΔΔCt methods, normalized to
an internal control (actin), and are shown as the fold change.
*p<0.05 compared with control. ACTB, β-actin; Ct, cycle
threshold; mRNA, messenger RNA; RT-PCR, reverse-transcription
PCR; RT-qPCR, real-time quantitative PCR; STAT1, signal
transducer and activator of transcription 1.
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Effect of calcipotriol on SOCS1 and SOCS3 mRNA and
protein expression in HaCaT cells
To further elucidate the effects of calcipotriol on the
STAT1 and STAT3 signaling pathway the expression of
their downstream molecules SOCS1 and SOCS3 was
assessed. As shown in figure 5A, B, RT-qPCR analysis indi-
cated that the mRNA expression levels of SOCS1 and
SOCS3 were significantly reduced in calcipotriol-treated
HaCaT cells compared with the control group (p<0.05).
Western blot analysis showed that calcipotriol treatment
significantly reduced the protein expression of SOCS1 and
SOCS3 (figure 6A). The density ratio of SOCS1 and
SOCS3 relative to GAPDH was significantly reduced com-
pared with the control group in the calcipotriol-treated
HaCaT cells (p<0.05) (figure 6B, C). Taken together, these
results suggest that calcipotriol inhibited HaCaT cell prolif-
eration, possibly via a mechanism associated with downre-
gulation of STAT1 and STAT3 and the SOCS1 and SOCS3
signaling pathway.

DISCUSSION
Accumulating studies implicated that STAT1 and STAT3
play crucial roles in the pathogenesis of psoriasis and might
serve as new therapeutic targets for the development of
psoriasis therapies.13 In this study, we sought to assess the
effects of calcipotriol treatment on cellular proliferation
and molecular signaling pathways in the immortalized
human psoriatic keratinocyte HaCaT cell line. While calci-
potriol is widely used in clinical practice for psoriasis treat-
ment, its mechanism of action is still unclear.27 28 We show
that after calcipotriol treatment, HaCaT cell proliferation
was inhibited, and p-STAT1 and p-STAT3, and their down-
stream proteins SOCS1 and SOCS3 were downregulated.
Therefore, we propose that calcipotriol-mediated inhibition
of HaCaT cell proliferation is mediated by inactivating
STAT1 and STAT3. To the best of our knowledge, this
study is the first to suggest this link between calcipotriol
treatment and STATs/SOCSs signaling in psoriasis.

Both our work and other studies have suggested that
STAT1 and STAT3 are aberrantly activated in the epidermis
of psoriatic lesions.16 17 29 STAT1 and STAT3 apart from

Figure 4 Calcipotriol reduced protein expression levels of signal
transducer and activator of transcription 3 (STAT3) and
phosphorylated STAT3 (p-STAT3). HaCaT cells were treated with
10 nM calcipotriol for 48 hours and total protein was harvested
for Western blot analysis to determine STAT1, p-STAT1, and
GAPDH protein expression levels (A). GAPDH was as internal
control. Protein bands were quantified with densitometry and the
relative density ratio of p-STAT3/STAT3 (B), p-STAT3/GAPDH (C),
and STAT3/GAPDH (D) were shown. *p<0.05 compared with
control.

Figure 3 Calcipotriol reduced protein expression levels of signal
transducer and activator of transcription 1 (STAT1) and
phosphorylated STAT1 (p-STAT1). HaCaT cells were treated with
10 nM calcipotriol for 48 hours, and total protein was harvested
for Western blot analysis to determine STAT1, p-STAT1, and
GAPDH protein expression levels (A). GAPDH was used as internal
control. Protein bands were quantified with densitometry and the
relative density ratio of p-STAT1/STAT1 (B), p-STAT1/GAPDH (C),
and STAT1/GAPDH (D) were shown. *p<0.05 compared with
control.

Figure 5 Calcipotriol reduced mRNA expression of SOCS1 and
SOCS3. HaCaT cells were treated with 10 nM calcipotriol for
48 hours. Total mRNA was extracted and used for RT-PCR, and
RT-qPCR to determine SOCS1 (A) and SOCS3 (B) mRNA
expression levels. Results were calculated with ΔΔCt methods,
normalized to internal control (actin), and shown as fold change.
*p<0.05 compared with control. ACTB, β-actin; Ct, cycle
threshold; mRNA, messenger RNA; RT-PCR, reverse-transcription
PCR; RT-qPCR, real-time quantitative PCR; SOCS1, suppressor of
cytokine signaling 1.
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regulating cell cycle progression genes such as cyclin D1,
PCNA, and p-RB, also control the production of the che-
mokines (CCL2, CXCL10, and CXCL8) and human
β-defensins (HBD-2 and HBD-3) in keratinocytes.30 31

Thus, by downregulating STAT1 and STAT3, calcipotriol
could potentially provide treatment for the inflammatory
process and keratinocyte proliferation that characterize
psoriasis. The JAK pathway is also involved in the signal

transduction pathway downstream of many of the cyto-
kines implicated in the pathogenesis of psoriasis.13 32 A
preclinical study showed a small molecule inhibitor of
JAK1 and JAK2 exhibits clinical activity for the topical
treatment of psoriasis.33 Other inhibitors such as tofacitinib
and lestaurtinib are in phase II trials to treat psoriasis.34–36

Given that JAKs are the primary activators of STAT pro-
teins,37 the effect of calcipotriol treatment on JAK activa-
tion during psoriasis warrants further investigation.

The SOCS family of proteins negatively regulates many
of the cytokine signal-transduction pathways that are
involved in the immunopathogenesis of inflammatory
disease.38 SOCS expression is rapidly induced by the JAK/
STAT pathway, and then triggers a negative feedback
process to inhibit JAK/STAT signaling. The SOCS proteins
can inhibit JAK/STAT signaling via several inhibitory
mechanisms, including directly binding to the catalytic
domain of JAKs and inhibiting the recruitment and phos-
phorylation of STAT proteins.39 40 Among the SOCS family
members, SOCS1 and SOCS3 are most well characterized
with regard to inflammation and cancer.41 42 SOCS1 inhi-
bits STAT1 activation in response to IFN-γ signaling, while
SOCS3 is a major negative regulator of IL-6 induced STAT3
signaling.39 Increasingly, the roles of SOCS1 and SOCS3 in
psoriasis are being recognized, but they are still largely
unknown.38 SOCS1 and SOCS3 proteins are highly
expressed in the epidermis of patients with psoriasis, which
might associate with impaired IFN-γ signaling.43 T cells
from patients with psoriasis are deficient in SOCS3 expres-
sion, which leads to an increased sensitivity to IFN-γ.44 In
transgenic mice, specific deletion of SOCS3 in keratinocytes
caused severe psoriasis-like skin inflammation, although
SOCS1 deletion caused no inflammation.45 Another study
showed that SOCS1 and SOCS3 suppressed
cytokine-induced apoptosis by sustaining the activation of
the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in
keratinocytes, which results in the thickening of psoriatic
skin.46 Further investigation is necessary to determine
whether the calcipotriol-induced downregulation of SOCS1
and SOCS3 in our study has similar biological functions.

In conclusion, our data support that calcipotriol-
mediated inhibition of cell proliferation may be associated
with downregulation of the STAT1 and STAT3 signaling
pathway. Consistent with previous findings, inhibiting
STAT1 and STAT3 exerts an anti-inflammatory and anti-
proliferative effect in psoriasis. We provide evidence sug-
gesting that calcipotriol might have a dual mechanism of
action in the treatment of psoriasis.
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of cytokine signaling 1 (SOCS1) and SOCS3. HaCaT cells were
treated with 10 nM calcipotriol for 48 hours, and total protein
was harvested for Western blot analysis to determine SOCS1,
SOCS3, and GAPDH protein expression levels (A). GAPDH was as
internal control. Protein bands were quantified with densitometry
and the relative density ratios of SOCS1/GAPDH (B) and SOCS3/
GAPDH (C) were shown. *p<0.05 compared with control.
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