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AbstrAct
MicroRNAs have been established as key regulators 
of tumor gene expression and as prime biomarker 
candidates for clinical phenotypes in epithelial 
ovarian cancer (EOC). We analyzed the coexpression 
and regulatory structure of microRNAs and their 
co-localized gene targets in primary tumor tissue of 
20 patients with advanced EOC in order to construct 
a regulatory signature for clinical prognosis. We 
performed an integrative analysis to identify two 
prognostic microRNA/mRNA coexpression modules, 
each enriched for consistent biological functions. 
One module, enriched for malignancy-related 
functions, was found to be upregulated in malignant 
versus benign samples. The second module, 
enriched for immune-related functions, was strongly 
correlated with imputed intratumoral immune 
infiltrates of T cells, natural killer cells, cytotoxic 
lymphocytes, and macrophages. We validated the 
prognostic relevance of the immunological module 
microRNAs in the publicly available The Cancer 
Genome Atlas data set. These findings provide novel 
functional roles for microRNAs in the progression of 
advanced EOC and possible prognostic signatures 
for survival.

INtrODUctION
Epithelial ovarian cancer (EOC) is the fifth 
leading cause of cancer-related deaths in 
women in the USA, with the highest mortality 
rate among all gynecological cancers.1 The 
survival of patients with advanced EOC has 
not changed significantly in the last 20 years, 
despite attempts at modifying both surgical 
and medical treatments.1 Prognosis in EOC 
depends heavily on the stage at diagnosis. 
Although 5-year survival is >90 per cent for 
stage I disease, roughly 70 per cent of patients 
present with advanced stage disease. For these 
patients, 5-year survival rates range between 
between 17 per cent and 59 per cent.2 This 
variability is not explained by course of treat-
ment nor surgical outcome. Thus, prognosis 
has been broadly attributed to the biology of 
the tumor. In particular, women diagnosed 

with ovarian cancer are almost uniformly 
treated with debulking surgery followed by 
cytotoxic treatments with taxane and plati-
num-based chemotherapy.3 Currently, even 
for women with optimally debulked tumors 
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significance of this study

What is already known about this subject?
 ► Individual tissue resident microRNAs 
are associated with clinical outcome in 
epithelial ovarian cancer (EOC).

 ► Immune infiltration is a salient 
phenomenon in EOC and is associated with 
clinical outcome.

 ► MicroRNAs and mRNAs are involved in 
complex regulatory relationships.

What are the new findings?
 ► One module of microRNAs, which consists 
of miR-197, miR-22, miR-22#, miR-28, 
miR-339–5p, miR-340#, miR-628–5p, 
miR-629, miR-661, and miR-98, is 
associated with intratumoral immune 
infiltration.

 ► A second module of microRNAs, which 
consists of let-7f, let-7g, miR-106a, miR-17, 
miR200c, miR-26a, miR-26b, and miR-328, 
is associated with more aggressive 
malignant growth.

 ► The malignancy module is downregulated 
while the immunological module is more 
variably expressed in benign ovarian 
neoplasm samples.

How might these results change the focus 
of research or clinical practice?

 ► The microRNAs associated with 
intratumoral immune infiltration may be 
biomarkers of treatment efficacy or drug 
targets for immunotherapy.

 ► Many of the microRNAs in this study have 
not been described to be associated with 
outcome in EOC and may become the focus 
of future EOC research.
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Figure 1 Two modules identified in the integrated survival 
analysis, immunological module (ImmMod) (left) and malignancy 
module (MalMod) (right). (Top) Subjects were stratified by 
modular microRNA risk scores into two groups with significantly 
disparate survival outcomes. (Middle) The genes of each module 
were enriched for known pathways. This panel shows the top 
keywords from the significantly (adjusted p value <0.05) enriched 
pathways, sized according to their enrichment significance. The 
keywords include immune system-related terms for ImmMod (left) 
and cellular division and growth-related terms for MalMod (right). 
(Bottom) The modular microRNA risk scores are defined by the 
weighted sum of 10 (ImmMod) and 8 (MalMod) microRNAs. The 
corresponding weights are depicted here in sorted order.
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and standardized postsurgery treatment, there is no reli-
able clinical test to predict the prognosis of those with 
advanced stage EOC. Many of the women with poor 
outcomes are either immediately resistant to chemo-
therapy or develop resistance after an initial course.4 
Therefore, there is an urgent need to understand the 
molecular factors that contribute to different clinical 
outcomes in order to successfully predict prognosis and 
determine the optimal treatment modality.

Recently, several studies have considered the potential 
of tissue-resident microRNAs as diagnostic and prog-
nostic biomarkers for EOC.5–8 These short (∼22 nucleo-
tides) regulatory RNA molecules can bind multiple mRNA 
molecules to inhibit translation and promote degradation. 
The stability of microRNAs, their role as master regula-
tors of gene expression, and their relative small number 
compared with mRNAs make them particularly attractive 
candidates for biomarkers. The robust clinical viability 
of a microRNA expression signature has recently been 
demonstrated for prediction of time to relapse in EOC.8

The particular role of microRNAs in tissue is highly 
heterogeneous and specific to the type of tissue, type 
of cell, and various clinical conditions.9–11 This makes 
biological and functional interpretation of the roles of 
microRNA in a particular study difficult to elucidate. 
This understanding is key to elevate microRNAs from the 
role of statistical biomarkers to biologically active agents 
in the complex pathology of EOC. This paradigm shift 
would allow for the development of microRNA assays 
to advance clinical practice by systematically subtyping 
patients and targeting particular intracellular signaling 
pathways. The two major approaches to functional anno-
tation of microRNA have been pathway enrichment 
through common predicted gene targets and small-scale 
in vitro or in vivo experiments. The former relies on 
non-context-specific in silico predictions and has been 
shown to introduce large bias in enrichment.12 The latter 
investigates a small part of a large regulatory structure in 
a model system and is thus limited in breadth, scope, and 
generalizability.

In this study, we focused on the interaction between 
a panel of 750 previously identified13 microRNAs co-lo-
calized with >16,000 genes in order to analyze high-
throughput microRNA expression in the context of target 
gene expression. Groups of genes, microRNAs, and other 
biomolecules act, in a coordinated fashion, through dense 
regulatory networks to achieve biological functions. 
Members of these groups exhibit correlated expression 
patterns and act on one or several functionally related 
signaling pathways. We performed an analysis to identify 
such groups, or modules, of genes and microRNAs that fit 
these criteria. Namely, the mRNA and microRNA within 
a module are correlated, and the mRNA are enriched for 
similar pathways. With our focus on prognosis, we also 
constrain these modules to be associated with survival. We 
discovered prognostic modules of coexpressed microRNA 
and genes associated with two distinct functional roles: 
malignant neoplastic growth and activity of intratumoral 
immune cells. These findings augment our understanding 
of the role of microRNAs in EOC and suggest specific 
molecular targets for controlling pathology-relevant 
functions.

rEsULts
Integrative analysis reveals immunological and 
malignancy modules
Our integrative analysis, described in more detail in the 
‘Materials and methods’ section, identified two function-
ally annotated, prognostic modules of correlated mRNA 
and microRNA. The key aspects of these two modules, 
which we named MalMod, the malignancy module, and 
ImmMod, the immunological module, are summarized in 
figure 1. For brevity, we summarized the top keywords from 
the functional pathway enrichment analyses in the figure 
(figure 1, middle right). The full enrichment results, as well 
as the representative genes for each module, are presented 
in online supplementary S2, S3.

The microRNA and correlated genes of MalMod were 
enriched in pathways related to cell cycle, gene transcrip-
tion and DNA synthesis. These processes are all aspects 
of the rapid neoplastic growth characteristic of malignant 
tumors. Thus, we labeled MalMod the malignancy module, 
under the hypothesis that it reflects greater malignancy. 
Accordingly, higher scores of MalMod activation corre-
spond to worse outcome. This modular microRNA activa-
tion score is computed as the weighted sum of microRNA 
expression. The weights of the MalMod microRNAs (let-7f, 
let-7g, miR-106a, miR-17, miR200c, miR-26a, miR-26b, 
and miR-328) are presented in order in figure 1 (bottom, 
right). Note that the expression of miR-17 and miR-106a 
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Figure 2 Comparison of microRNA module activation between 
benign and malignant tumor samples. Boxplots show the median, 
IQR and 5 per cent and 95 per cent extremes of the module 
activation distributions. The malignancy module activation (right) 
is significantly higher in malignant samples (t-test p<0.001). While 
the same is not true for immunological module (left, p=0.30), 
the variance of the distributions is significantly different (F-test 
p=0.001).
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is both directly proportional to MalMod activity, while 
the expressions of the rest of the microRNAs is inversely 
proportional. Thus, in this module, underexpression of 
miR-17 and miR-106a and overexpression of the other 
microRNAs correspond to good outcome.

The genes of ImmMod were enriched (see Identification 
of modules using sparse, supervised Canonical Correlation 
Analysis (CCA)) in functions related to immune cell pathways 
and cytokine signaling. This annotation reflects a greater 
degree of intratumoral immune system activity. Thus, we 
labeled ImmMod the immunological module. Higher scores 
of ImmMod activation corresponded to better outcome. This 
trend is concordant with previous observations linking greater 
immune infiltration to good outcome. The weights of the 
ImmMod microRNAs (miR-197, miR-22, miR-22#, miR-28, 
miR-339–5p, miR-340#, miR-628–5p, miR-629, miR-661, 
and miR-98) are presented in order in figure 1 (bottom, 
left). The expression of ImmMod microRNAs was positively 
correlated to module activity. Thus, overexpression of all 
ImmMod microRNAs was associated with a good outcome.

Both modules were trained to be associated with 
outcome. To confirm this after the fact, we stratified the 
20 subjects based on their modular microRNA risk scores 
and reported the Kaplan-Meier curves in figure 1 (top). As 
expected, the survival difference between the strata was 
significant for both MalMod (p=0.0002) and ImmMod 
(p=0.002). 

The prognostic relevance of immune infiltrates, partic-
ularly T cells in EOC tumors, is well established.14 Like-
wise, the significance of cellular growth and proliferation 
is self-evident in cancer. Thus, the relevance of both the 
MalMod and ImmMod annotations to EOC prognosis 
is well established. Our analysis begins to tie groups of 
microRNA to these previously identified phenotypes. For 
comparison, it is worth noting that univariate analyses did 
not reveal any significant association of any one gene or 
microRNA with survival (see online supplementary figures 
S1 and S2), whereas our integrated multivariate analysis 
revealed subtle group patterns.

comparison of modular microrNAs signature in 
malignant versus benign samples
The MalMod and ImmMod were trained to be associ-
ated with survival outcome among patients with malig-
nant EOC tumors. To explore whether these modules also 
relate to the malignancy phenotype, we compared the 
modular microRNA signatures for malignant EOC samples 
(n=27), irrespective of survival outcome, with those of 
benign neoplasm samples (n=13). Figure 2 summarizes these 
comparisons with boxplots of module activity. MalMod was 
found to be significantly upregulated (p<0.001) in the malig-
nant versus benign samples, supporting our hypothesis that 
the MalMod risk score corresponds to greater malignancy. 
Together, these results suggest a continuum of increasingly 
severe phenotypes that correspond to MalMod microRNA 
activity, from benign through malignant-good outcome to 
malignant-poor outcome. Unlike MalMod, ImmMod is not 
differentially active (p=0.30) between the malignant and 
benign groups. However, its activation is significantly more 
variable in the malignant group (p=0.001). This may reflect 
the more heterogeneous immune response to aggressive 

tumorigenesis compared with the relatively homogeneous 
response to the limited growth of benign neoplasms.

As shown in table 1, the distribution of ages is signifi-
cantly different (p=0.002) between the EOC and benign 
cohorts. Thus, to make sure that age is not a confounding 
factor, we repeated the analyses from this section, condi-
tioning on age as a covariate. MalMod is still significantly 
upregulated in the EOC group (p=0.004), while age does 
not contribute significantly to the difference between the 
two groups (p=0.23). Likewise, ImmMod is still more vari-
able expressed in the EOC group (p=0.001), whereas age 
does not contribute significantly (p=0.87).

Validation of ImmMod microrNAs and pathways in tcGA 
data
We evaluated the reproducibility of our results in publicly 
available EOC data from The Cancer Genome Atlas (TCGA) 
consortium. We downloaded level 3 microarray microRNA 
expression, microarray mRNA expression, and clinical data 
on 519 subjects with available overall survival follow-up and 
late-stage EOC. Because we assayed microRNA and mRNA 
expression on different platforms than those used in TCGA, 
we could not directly apply our mathematical prognostic 
model to the public data. As a proxy, we developed a vali-
dation pipeline that uses the microRNAs and pathways of 
our trained module for variable selection, fits the numerical 
parameters for TCGA data using an unsupervised analysis, 
and finally tests the validity of the model with respect to 
clinical outcomes. See the methods and supplementary mate-
rials for more details and further discussion of the validation 
strategy.

Briefly, an unsupervised correlation-based analysis 
with the 10 ImmMod microRNAs and 1327 mRNAs 
involved in the ImmMod pathways resulted in five prelim-
inary TCGA-specific modules. Of these, one was not 
enriched for any pathways and three were enriched for 
non-immune-related pathways. These were discarded. 
The last module, which we named ValMod for valida-
tion module, was enriched for immune system-associated 
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table 1 Clinical and demographic statistics of patients enrolled 
in this study 

benign
(n=13)

EOc
(n=27)

EOc with 
survival 
outcome (n=20)

tcGA
(n=519)

Race

White 8 21 16 456

Non-white 5 6 4 63

Age

Range (years) 38–71 31–87 31–86 26–87

Mean (years) 51 67 63 60

SD (years) 13 12 13 12

Stage

IIB – 2 2 0

IIIA – 0 0 8

IIIB – 4 4 23

IIIC – 19 12 404

IV – 2 2 84

Histopathology

High-grade serous – 27 20 500

Low-grade serous – 0 0 19

27 patients with malignant  and 13 with benign  were recruited for this 
study. Of the 27 EOC subjects, 20 had sufficient clinical  to perform survival 
analysis. Finally, we used a validation cohort of 519 cases of EOC from 
the TCGA ovarian cancer database. The summary statistics on race, age at 
diagnosis and tumortumor pathological stage are  in this table.
EOC, epithelial ovarian cancer; TCGA, The Cancer Genome Atlas.

Figure 3 Validation of the immunological module (ImmMod) 
microRNA immunological signature in The Cancer Genome 
Atlas (TCGA). The custom validation pipeline was performed 
on the TCGA epithelial ovarian cancer data set, using the 10 
ImmMod microRNA and 1327 immune-related genes from the 
ImmMod- enriched pathways. The resulting module, validation 
module (ValMod), was enriched for several immune-related 
pathways (middle) and significantly associated with survival (top). 
The weights of the microRNAs to the ValMod microRNA risk score 
are depicted in the bottom panel.

Original research

pathways (figure 3, middle), namely the Adenylate Cyclase 
pathway, LPA4-mediated signaling, and the PKA-me-
diated phosphorylation of cAMP response element-
binding protein (CREB). We evaluated this TCGA-specific 
ImmMod for association with clinical outcome. The 
microRNA risk score of ValMod was found to be signifi-
cantly prognostic (p=0.001) for overall survival. As with 
ImmMod, a higher ValMod microRNA risk score was asso-
ciated with a good outcome. The weights of the ValMod 
microRNA (figure 3, bottom) were evenly split between 
positive and negative. However, the cumulative positive 
weights carried considerably more weight than the nega-
tive (1.96 positive vs 0.76 negative). Thus, we consider 
that the overall overexpression of ValMod microRNAs 
is associated with a good outcome. For a second survival 
analysis, we stratified the subjects into equally sized high-
risk (low ValMod activity) and low-risk (high ValMod 
activity) groups based on the ValMod microRNA score. 
The survival distribution from the high-risk group (median 
survival 3.17 years) was significantly different (log-rank 
p<10–4) from that of the low-risk group (median survival 
4.14 years). These distributions are visualized by Kaplan-
Meier curves in figure 3 (top). These analyses demonstrate 
that the ImmMod microRNAs, weighted by their correla-
tion to coexpressed immune pathway genes, contribute 
to overall outcome in the TCGA data set. On the other 
hand, the mRNA component of the ValMod module was 
not significantly associated with outcome (likelihood ratio 
p=0.07, log-rank p=0.68). This predictive asymmetry 
suggests that microRNA expression may be a more robust 
and reproducible marker of outcome than gene expression.

MicrorNA signature in ImmMod strongly correlated with 
imputed infiltration levels of t cells, natural killer cells, 
cytotoxic lymphocytes and macrophages
ImmMod was found highly enriched for various immune cell 
signaling pathways. Our samples were purified for tumor 
tissue at the exclusion of surrounding stromal tissue. Thus, 
we interpreted this signature to reflect the degree of intratu-
moral immune cell infiltration. To narrow down the partic-
ular types of infiltrating cells, we performed a secondary 
analysis to determine the relative degree of immune infil-
tration in each sample. Using the algorithm MCP counter 
(see ‘Materials and methods’), we imputed the degree of 

 on A
pril 9, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2017-000457 on 17 July 2017. D
ow

nloaded from
 



1072 Korsunsky I, et al. J Investig Med 2017;65:1068–1076. doi:10.1136/jim-2017-000457

Figure 4 Correlation of the immunological module (ImmMod) 
microRNA and mRNA components to intratumoral immune cell 
signatures. The ImmMod modular activation scores for both 
microRNA and mRNA were found to be positively correlated 
to four categories of infiltrating immune cell types: monocytic 
lineage, T cells, cytotoxic lymphocytes, and natural killer (NK) cells.

Original research

infiltration of eight different immune cell types from the 
whole-gene expression profile of each sample. These cells 
included CD3 T cells, natural killer (NK) cells, neutrophils, 
myeloid dendritic cells, monocyte lineage cells (including 
macrophages), cytotoxic lymphocytes, CD8 T cells, and B 
lineage cells. We then correlated the ImmMod microRNA 
and mRNA signatures with the imputed levels of each cell 
type, across all primary EOC samples. Figure 4 summarizes 
the ordered correlation results for all cell types. The analysis 
revealed that the ImmMod signatures are significantly posi-
tively correlated with the infiltration of CD3 T cells (mRNA 
r2=0.85, p=0.002, microRNA r2=0.68, p=0.030), Cyto-
toxic lymphocytes (mRNA r2=0.85, p=0.002, microRNA 
r2=0.66, p=0.037), NK cells (mRNA r2=0.78, p=0.008, 
microRNA r2=0.75, p=0.014) and monocyte lineage 
cells (mRNA r2=0.89, p=0.0005, microRNA r2=0.69, 
p=0.026). The positive correlation of microRNA expres-
sion with the degree of imputed immune cell types vali-
dates ImmMod as a marker for greater immune infiltration. 
These results suggest that the ImmMod microRNA may 
play a role in the interplay with these four cell types, as 
regulators of gene expression either inside the immune 
cells or in the tumor cells’ response to the immune infil-
trates. Curiously, CD8 T cells are not associated with the 
ImmMod microRNAs, even though they have also been 
previously linked with outcome.14 On the other hand, cyto-
toxic lymphocytes, a functional category that represents 
activated T and NK cells, are strongly correlated with the 
microRNAs. Thus, ImmMod may represent not just the 
infiltration of immune cells but also distinguish between 
active and inactive states of these cells.

DIscUssION
The use of microRNAs as clinical biomarkers has gener-
ated great interest in cancer research, as well as many other 
disease areas. Often univariate analyses are employed in 
these research studies. Our study has taken a more inte-
grative functional approach by examining disease survival 
analysis based on correlated expression patterns (modules) 
of both microRNA and mRNA expression. We identified 
two groups of microRNAs and associated them to crucial 

processes in oncology: neoplastic growth and immune 
system involvement. To validate the connection between the 
modules’ microRNAs and their putative functional roles, 
we performed two secondary analyses. First, we demon-
strated that the MalMod microRNA risk score distinguishes 
malignant from benign samples, in the direction predicted 
by the primary survival analysis. Second, we demonstrated 
the prognostic relevance of the ImmMod immune module 
with a custom validation pipeline on publicly available data 
from the TCGA. Despite the differences in technologies 
and highly heterogeneous nature of the TCGA collection, 
we observed a significant association between the ImmMod 
microRNA and TCGA outcome. Most of the microRNAs in 
the MalMod and ImmMod modules have been previously 
implicated in EOC and other cancers.

In particular, the microRNAs in MalMod have been 
previously associated with cell growth and proliferation. 
Let-7g was found to play a pivotal role in invasion and 
metastasis.15 It was also overexpressed in epithelial versus 
mesenchymal cell lines, suggesting a growth-suppressive 
role.16 The miR-17/92 microRNA family was implicated in 
the enhancement of cell proliferation,17 miR-26a in inhibi-
tion of cell growth,18 and miR-26b the promotion of apop-
tosis.19 Finally, miR-200c was found to affect cell migration 
and metastasis through indirect regulation of E-cadherin.20 
Likewise, the microRNAs of the immunological module 
have been implicated in immunological functions. MiR-22 
was found to be protective for emphysema, the most 
predictive clinical marker for lung cancer, via regulation of 
the nuclear factor-kB pathway.21 MiR-22 was also shown 
to be active in murine dendritic cells.22 Similarly, several 
studies demonstrate the involvement of miR-98 in cytokine 
signaling and response to infection23 and lipopolysaccha-
ride (LPS) stimulation.24 Mir-197 has recently been shown 
to participate in tumoral immune system evasion, through 
acting on PD-L1 signaling,25 a promising target for immu-
notherapy.26 Mir-197 has also been shown to participate in 
crosstalk with the interleukin-22 pathway,27 a key cytokine 
pathway in autoimmunity and cancer. Lastly, miR-339 was 
found to be produced by the RNase III endonuclease Dicer 
and regulate ICAM-1 (Intercellular Adhesion Molecule 1) 
in the sensitization of tumor cells to cytotoxic lympho-
cytes.28 Our results suggest specific and divergent roles for 
the ImmMod and MalMod microRNAs in the pathogen-
esis of EOC. In the quest to target or subtype patients on 
particular pathways and phenotypes, this level of specificity 
is key.

We identified 10 microRNAs, from ImmMod, that may 
be associated with immune infiltration in EOC tumors. On 
further analysis, we found these microRNA to be positively 
correlated with the putative presence of T cells, cytotoxic 
lymphocytes, NK cells, and macrophages, as imputed from 
the gene expression data. The degrees of infiltration of T cells, 
NK cells, and macrophages have been previously associated 
with several metrics of EOC disease severity,14 29 30 including 
overall survival and degree of drug response. Moreover, the 
strong correlation with the imputed cytotoxic lymphocyte 
levels and not with the imputed CD8 T cell levels suggest that 
the ImmMod microRNAs may reflect a functional state of the 
intratumoral immune cells that is more prognostically rele-
vant than the presence of cells alone.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2017-000457 on 17 July 2017. D
ow

nloaded from
 



1073Korsunsky I, et al. J Investig Med 2017;65:1068–1076. doi:10.1136/jim-2017-000457

Original research

There are several limitations of this study. First, our sample 
size is limited and it is clear that further replications are 
required to support our findings. In addition, our analysis is 
based on correlative measures of expression and outcome. 
Without further experimental validation, we cannot infer 
any truly causal relationships between microRNA and 
target genes in EOC. Our approach simply provides novel 
information to guide such experiments. A third limitation 
arises from the fact that all expression is assayed from bulk 
tissue samples. Although we make the necessary assump-
tion that the microRNA and mRNA are co-localized and 
homogeneously expressed, the most correlated microRNA 
and genes may originate from different cells and are thus 
not truly co-localized. This issue is particularly interesting 
in the case of ImmMod. In the immune infiltration anal-
ysis, we found that our samples had a significant range of 
different intratumoral immune cells. This means that the 
bulk expression we measured comes from different propor-
tions of tumor and immune cells in each samples. For the 
ImmMod microRNAs, for instance, we cannot distin-
guish between two plausible scenarios. On the one hand, 
the ImmMod microRNAs may be native to immune cells 
and simply a marker for greater infiltration. On the other 
hand, these microRNAs may be expressed by tumor cells 
and interact with the immune system to modulate infiltra-
tion. The former suggests a passive marker for infiltration, 
whereas the latter suggests opportunities for intervention. 
The disambiguation of these stories requires finer-grained 
resolution with single-cell expression assays.

The emergence of an immune-related module in our anal-
ysis is particularly relevant to the current trend to develop 
immunotherapies in gynecological oncology.31 MicroRNAs 
have been studied in both the context of fundamental 
immune function and regulation32 as well as specifically in 
immunotherapy. Several microRNAs have been suggested as 
biomarkers for immunotherapy effectiveness.33 Our immune 
module may be relevant to various clinical aspects of immuno-
therapy, as a biomarker, as a target, or as a secondary therapy 
to improve the efficacy of primary immunotherapy.

MAtErIALs AND MEtHODs
study subjects
Five-micron sections of formalin-fixed paraffin embedded 
ovarian tissue samples were obtained for primary tissue 
samples from 27 women with confirmed epithelial ovarian 
cancer and 13 women with benign ovarian masses. To 
reduce the contribution from normal tissue, samples were 
cut using a Leica LMD 7000 Laser Dissecting Micro-
scope. Total RNA was extracted using the Recover All 
Total Nucleic Acid isolation kit (Ambion) according to the 
manufacturer’s instructions. RNA quantity and quality was 
measured using Agilent 2100 bioanalyzer. Demographic 
information for the subjects enrolled in this study is summa-
rized in table 1. Subjects with late-stage cancer, defined as 
stage IIc or higher, were selected for inclusion in the study. 
Two patients with a stage IIb tumor were also included 
because of the presence of metastatic lesions. Patients who 
survived <1 month were filtered to exclude those likely to 
have died from a secondary cause. All patients analyzed had 
high-grade epithelial ovarian carcinomas otherwise known 
as papillary serous epithelial ovarian cancer.

Ethics statement
All tumor samples were collected under a protocol 
approved by the institutional review board (IRB) of 
Northwell Health. All subjects provided written informed 
consent. The methods were carried out in accordance with 
the approved guidelines. All experimental protocols were 
approved by the Northwell Health IRB.

microrNA profiling
Total microRNA profiles were generated on isolated 
RNA samples using ABI TaqMan OpenArray MicroRNA 
pools A and B to measure the expression of 750 known 
microRNAs. Briefly, 100 ng of isolated total RNA was used 
with TaqMan Megaplex RT primer pools A or B to generate 
cDNA, which was subsequently amplified using the corre-
sponding Megaplex PreAmp Primers (pools A or B, respec-
tively) following the manufacturer’s instructions. Real-time 
quantitative PCR (qPCR) was performed on the TaqMan 
OpenArray MicroRNA arrays using the Applied Biosystem 
OpenArray Real-Time PCR system. Data were processed 
using the OpenArray Real-Time qPCR Analysis software 
and exported for analysis using the Applied Biosystems 
DataAssist Software. qPCR expression is measured in terms 
of the cycle threshold (Ct), defined as the minimum number 
of PCR rounds required to detect a signal. Thus, higher Ct 
values reflect lower expression levels, and a linear change 
in Ct denotes an exponential change in molecular abun-
dance. For all analyses, we used the negation (–Ct) to make 
the expression value proportional to the molecular abun-
dance. A Ct cut-off of 30 was used for expression detec-
tion. MicroRNAs detected in zero samples were discarded, 
resulting in 366 microRNAs for analysis. Raw Ct expres-
sion values were normalized using the ∆Ct method,34 with 
the top 10 housekeeping microRNAs obtained from the 
geNorm algorithm,35 implemented in the R Bioconductor 
NormqPCR package, V.1.20 mRNA profiling. mRNA 
profiles were generated using Illumina’s Whole Genome 
Gene Expression DASL HT Assay. Approximately 200 ng of 
RNA from 19 primary ovarian cancer tissue samples were 
processes. RNA was converted into cDNA, hybridized to 
the Human HT-12 v4 Expression BeadChip containing 
29,000 transcript probes and processed and scanned on 
a HiScan Beadarray scanner according to manufacturer’s 
instructions. Raw image files from the Human HT-12 
v4 DASL Expression BeadChip were imported into the 
GenomeStudio software, processed to compute expression 
values, and output in the standard FinalReport format. 
The Bioconductor package lumi (V.2.23.1) was used for 
non-negative background correction, variance stabiliza-
tion via a log2 transformation, and quantile normalization. 
Probes that passed the GenomeStudio detection threshold 
p value of 0.01 in at least one sample were retained. This 
resulted in 26,259 probes, mapped to 16,691 unique genes, 
for further analysis. Gene expression values were computed 
as the arithmetic mean of their respective probes.

Identification of modules using sparse, supervised 
canonical correlation Analysis (ccA)
Modules were constructed in a three-step process, 
depicted in figure 5. First, microRNA and gene expres-
sion values were normalized and gene expression values 
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Figure 5 Overview of the primary module identification pipeline. 
(Top) Normalized expression data for microRNA and mRNA are 
matched with corresponding survival outcome data for patients. 
(Middle) Canonical correlation analysis with the expression and 
outcome data results in preliminary modules. Each module consists 
of a set of microRNA and mRNA. The weights over these microRNA 
and mRNA define two module activation scores, which are 
strongly correlated to one another as well as the survival outcome. 
(Bottom) Pathway enrichment on the modules’ genes defines a 
functional annotation for the module. Modules with consistent 
biological annotations are retained as functional modules and the 
rest are omitted from downstream analysis.

Original research

averaged over probes, as described above. Second, putative 
modules were defined using supervised, sparse canonical 
correlation analysis,36 described below. Finally, the puta-
tive modules were enriched for pathways and only those 
with significant functional enrichment were retained.
1. Preliminary module identification. For this step, we 

used the sparse (L1 regularized), supervised canonical 
correlation analysis, as implemented in the R PMA 
package V.1.09 for penalized multivariate analysis. 
Unless otherwise specified, we used default parameters. 
This analysis is intimately related to the ubiquitous 
genomics tool, principal components analysis (PCA). 
PCA inputs one matrix and constructs principal 
components that capture maximal variance of the data. 
Traditional CCA inputs two matrices and constructs 
pairs of canonical components that both capture 
maximal variance within each individual matrix and are 
strongly correlated with one another. Supervised CCA 
also includes a phenotypic endpoint, such as survival 
time, and constrains the canonical components to be 
predictive of this end point. Finally, sparse, supervised 
CCA enforces the property that most of the weights 
in the canonical components are zero. Thus, only a 
relatively small number of features contributes to each 
canonical component. We performed sparse, supervised 

CCA on the full, normalized microRNA and mRNA 
expression data and used right-censored, overall survival 
as the primary end point. CCA resulted in a set of K 
pairs of canonical components. Each pair contained one 
component from the microRNA expression data and 
one from the mRNA expression data. Each pair of 
canonical components defined a preliminary module. 
Thus, a preliminary module consists of a small set of 
microRNAs, a small set of mRNAs, and weights for each 
set, in which the weight represents the contribution of 
the feature to the module. K, the number of groups was 
heuristically selected so that all canonical components 
had at least 0.8 correlation.

2. Pathway enrichment. The preliminary modules had 
been constructed using solely statistical relationships. 
Particularly with limited sample sizes, the reliability 
of such a biologically agnostic approach is sensitive to 
spurious correlations. Thus, we further constrained 
our modules to have functional biological significance. 
This is achieved using pathway enrichment on a 
module’s genes that have a non-zero weight. That is, 
we considered the genes that significantly contribute 
to the module and search for common pathways and 
functions of these genes. Pathway enrichment was 
performed using a custom script for over-representation 
analysis with Fisher’s one-sided exact test. Raw p values 
were adjusted using Benjamini Hochberg’s37 method for 
multiple hypothesis correction. An adjusted p value cut-
off of 0.05 was used for significance. Gene sets were 
obtained from the MSigDB v5.2 C2:CP, C2:BIOCARTA, 
C2:KEGG, and C2:REACTOME collections.38 These 
gene sets contain manually curated pathways compiled 
from BioCarta,39 KEGG,40 and Reactome41 databases.

Activation scores
Throughout the analyses, we use the modular microRNA 
and mRNA weights to compute module activity scores, 
also referred to as modular risk scores. These scores 
were computed as the product of microRNA (or mRNA) 
expression matrix (XNxM) with the module’s microRNA 
(or mRNA) component (uMx1), in which N is the number 
of samples and M the number of contributing microRNAs 
(or mRNAs) in the module. The result of the product is 
a matrix (ANx1) with one microRNA module activity level 
for each sample. These activity scores were used in the 
malignant versus benign comparisons, in correlation with 
immune infiltrates, and in assessing the concordance of 
risk scores to survival outcome.

survival analysis
Aside from the supervised CCA, described above, two 
forms of survival analysis were performed using modular 
risk scores. Cox’s univariate proportional hazards regres-
sion42 was performed to evaluate the overall concordance 
of the risk score with the right-censored survival outcome. 
Significance for these regressions was evaluated with the 
likelihood ratio test. Where appropriate, we adjusted 
the p values using Benjamini Hochberg’s procedure for 
controlling the false discovery rate.37 In addition to the 
Cox analysis, we also stratified patients based on risk 
score into two groups. For our data, we stratified using 

 on A
pril 9, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2017-000457 on 17 July 2017. D
ow

nloaded from
 



1075Korsunsky I, et al. J Investig Med 2017;65:1068–1076. doi:10.1136/jim-2017-000457

Original research

k-means clustering; for the TCGA data, we divided the 
groups by the median risk score. To evaluate the signifi-
cance of the difference between group outcomes, we used 
the log-rank test.43

Immune infiltration
Immune infiltration imputation from bulk gene expression 
was conducted using the recently published MCP counter 
algorithm,44 as implemented in the R package MCPcounter 
V.1.1.0. Correlation of immune infiltration levels with 
modular risk scores was done with the standard R implemen-
tation for Pearson’s correlation.

Analyses of malignant versus benign microrNA
These two group analyses compared the different levels and 
variance of module activity of benign and malignant samples 
using R’s standard implementation of the t-test and F-test, 
respectively.

Validation on tcGA data
Direct validation of our mathematical prognostic model 
was limited by the lack of public data sets with matched 
expression data assayed with the same platforms we 
used. To overcome this limitation, we developed a vali-
dation strategy that preserved the qualitative, biological 
hypothesis from our model and fit the quantitative details 
to an external testing data set. In this way, we were less 
constrained by incompatible platforms and focused on the 
biological contributions of our findings. The full details 
of this pipeline are described in the online supplementary 
materials.
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