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AbsTRACT
This paper gives a brief overview of common 
non-invasive techniques for body composition 
analysis and a more in-depth review of a body 
composition assessment method based on fat-
referenced quantitative MRI. Earlier published 
studies of this method are summarized, and a 
previously unpublished validation study, based on 
4753 subjects from the UK Biobank imaging cohort, 
comparing the quantitative MRI method with dual-
energy X-ray absorptiometry (DXA) is presented. For 
whole-body measurements of adipose tissue (AT) or 
fat and lean tissue (LT), DXA and quantitative MRIs 
show excellent agreement with linear correlation 
of 0.99 and 0.97, and coefficient of variation (CV) 
of 4.5 and 4.6 per cent for fat (computed from AT) 
and LT, respectively, but the agreement was found 
significantly lower for visceral adipose tissue, with a 
CV of >20 per cent. The additional ability of MRI to 
also measure muscle volumes, muscle AT infiltration 
and ectopic fat, in combination with rapid scanning 
protocols and efficient image analysis tools, makes 
quantitative MRI a powerful tool for advanced body 
composition assessment.

INTRODUCTION
The human body—as well as the body of 
every other animal—is mainly composed of 
four molecular-level components: water, fat, 
proteins and minerals, usually in that order of 
decreasing amounts.1 The substance that has 
attracted the most attention, from laypeople to 
medical professionals, is fat. This is, of course, 
motivated by the well-established fact that 
an excessive amount of body fat is related to 
increased morbidity and mortality. But also 
because adipose tissue (AT) is, by far, the most 
varying compartment—between individuals, 
but also within an individual over time. The 
most widely used way to estimate body fat is the 
body mass index (BMI)—body weight normal-
ized by height squared (kg/m2). Being a very 
simple and inexpensive method, it is the basis 
for WHO’s definition of overweight (25≤ BMI 
<30) and obesity (BMI ≥30). However, for a 
given BMI, the body fat percentage changes 
with age, and the rate of this change is different 
depending on sex, ethnicity and individual 
differences.2 And while BMI correlates with 
fat accumulation and metabolic health in large 

populations, it is insensitive to the actual distri-
bution of body fat.3

When comparing methods for body compo-
sition analysis, it is important to distinguish fat 
(triglyceride) from AT,4 which contains approx-
imately 80 per cent fat, the rest being water, 
protein and minerals.5 While most of the body 
fat is stored in AT, fat is also present in organs 
such as liver and skeletal muscle. Today, it is 
well known that the metabolic risk related to 
fat accumulation is strongly dependent on its 
distribution. Central obesity and, in particular, 
ectopic fat accumulation are important meta-
bolic risk factors.6–8 Large amounts of visceral 
AT (VAT) are related to increased cardiac 
risk,8 9 type 2 diabetes,10 11 liver disease12 and 
cancer.13 14 High levels of liver fat increase the 
risk for liver disease and type 2 diabetes,15 and 
increased muscle fat has been associated with 
increased risk for insulin resistance and type 2 
diabetes16 and reduced mobility.17 While there 
are other anthropometric measures, such as 
waist circumference and waist-to-hip ratio, 
which more strongly correlate with metabolic 
risk,18 19 it is now well recognized that BMI and 
other anthropometric surrogate measures are 
poor predictors for individual fat distribution 
and metabolic risk.3 20 21

Besides fat, acting as the body’s long-term 
energy storage, skeletal muscles are of great 
interest to study, and the balance between 
the energy-consuming muscles and the ener-
gy-storing fat compartments is, of course, highly 
relevant in order to understand the metabolic 
balance of the body. Cachexia, involuntary loss 
of body weight, usually with disproportionate 
muscle wasting, is a life-threatening condition, 
often related to the progression of an under-
lying serious disease (eg, cancer22). In cancer, 
cachexia is defined as weight loss of >5 per cent 
over 6 months, BMI <20 kg/m2 or appendic-
ular muscle mass normalized by body height 
squared of <7.26 kg/m2 or 5.45 kg/m2 for males 
and females, respectively.23 Sarcopenia, which 
can be related to cachexia, but is also associated 
with aging, is often defined as reduced physical 
performance following loss of muscle mass, 
usually accompanied by increased fat infiltra-
tion of the muscles.24 When diagnosing sarco-
penia, muscle strength tests combined with 
muscle volume measurements are needed.25 
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Furthermore, Willis et al showed that muscle pathology 
progression over 1 year could be detected by quantitative 
MRI but not by assessing muscle strength or function.26 
These examples illustrate the need for more sophisticated 
body composition analysis tools that go beyond simple 
anthropometric measures.

Since the early part of the last century, scientists have tried 
to determine the body composition in different ways, with a 
wide range of different physical principles and devices, and 
using different models and assumptions. Today, local in vivo 
measurements of different fat depots and fat infiltration in 
organs can be made using tomographic imaging techniques 
such as CT and MRI that were not even invented when the 
first scientific studies on body composition were published. 
These techniques are now recognized as golden standard 
for body composition analysis.25 27

The purpose of this paper is to give a brief introduction 
to the most commonly used methods for body composition 
analysis and a review of an MRI-based body composition 
analysis technique, comparing its performance to other 
methods. This includes a previously unpublished validation 
study of the agreement between this method and dual-en-
ergy X-ray absorptiometry (DXA).

TECHNOLOGY OVERVIEW
A number of different techniques for body composition 
assessment have been developed, from very simple indirect 
measures such as waist-to-hip ratio and calipers to sophis-
ticated direct volumetric measurements based on three-di-
mensional imaging techniques. There are also a range of 
invasive or in vitro methods for body composition analysis 
such as inhalation or injection of water-accumulating or 
fat-accumulating agents, or dissection and chemical analysis 
of cadavers. This overview will, however, focus solely on 
non-invasive in vivo measurement techniques.

Hydrostatic weighing (densitometry)
Hydrostatic weighing (underwater weighing), or densitom-
etry, is based on Archimedes’ principle. The difference of the 
body weight in air and water is used to compute the body’s 
density. Assuming a two-component model with different 
densities for fat mass and fat-free mass and correcting for 
the air volume in the lungs, the total body fat percentage 
can be estimated. Obviously, this technique cannot give any 
measurements of the distribution of AT or lean tissue (LT).

Air displacement plethysmography (ADP)
ADP is perhaps better known under its commercial 
brand name BOD POD (Life Measurement, Concord, 
California, USA). Similar to hydrostatic weighing, ADP 
measures the overall body density and hence total body fat 
and LT but not their distributions. By putting the body in an 
enclosed chamber and changing the chamber’s volume, the 
volume of the displaced air (ie, the volume of the body) can 
be determined from the changes in air pressure. Since ADP 
is based on the same two-component model as hydrostatic 
weighing, it is also affected by the same confounders, mainly 
variations in bone mineral content (BMC) and hydration. 
Due to the limitations of the two-component model used 
in densitometry and ADP, a four-component (4C) model is 
often recommended.28 29 In addition to fat and LT, the 4C 

model also takes BMC and total body water (TBW) into 
account. However, these two additional components have 
to be measured by other techniques (eg, DXA for the BMC 
and deuterium oxide dilution for TBW30) The repeatability 
(coefficient of variation (CV)) of ADP for body fat has been 
reported to be between 1.7 and 4.5 per cent when measured 
within 1 day.31 Obviously, ADP, as well as hydrostatic 
weighing, is limited to gross body composition analysis, not 
making any estimates of regional fat or muscles.

bioelectrical impedance analysis (bIA)
BIA uses the electrical properties of the body to estimate 
the TBW and from that the body fat mass.32 33 The body is 
modeled as five cylindrical LT compartments; the trunk and 
the four limbs, while fat is considered to be an insulator. 
The impedance is assumed to be proportional to the height 
and inversely proportional to the cross-sectional area of 
each compartment, and the electrical equivalent is a resistor 
(extracellular water) in parallel with a capacitor and a 
resistor in series (intracellular water). The model of uniform 
distribution of fat and water fits better to the extremities 
than the trunk,34 and while there are BIA measurements 
that correlate well with total abdominal AT, BIA cannot be 
used for measuring VAT.35 Potential error sources are vari-
ations in limb length (usually estimated from body height), 
recent physical activity, nutrition status, tissue temperature 
and hydration, blood chemistry, ovulation and electrode 
placement.32 BIA requires different model parameters to be 
used depending on age, gender, level of physical activity, 
amount of body fat and ethnicity in order to be reliable.36 37

Dual-energy X-ray absorptiometry
DXA is a two-dimensional imaging technique that uses 
X-rays with two different energies. The attenuation of an 
X-ray is dependent on the thickness of the tissue and the 
tissue’s attenuation coefficient, which is dependent on 
the X-ray energy. By using two different energy levels, the 
images can be separated into two components (eg, bone and 
soft tissue). DXA is mainly used for bone mineral density 
measurements, where it is considered as the gold stan-
dard,38 but it can also be used to estimate total and regional 
body fat and LT mass. Pixels, where the ratio between atten-
uations of the two energies falls below a certain threshold, 
are classified as soft tissue (ie, without bone), and in those 
pixels, the attenuation is linearly dependent on the fat frac-
tion of the soft tissue. Pixels above the threshold contain 
a mixture of bone and soft tissue, and there the soft tissue 
properties need to be interpolated from surrounding soft 
tissue pixels.39 Approximately one-third of the pixels of the 
projected body contains bone.40

DXA has been found to be more accurate than densi-
ty-based methods for estimating total body fat.41 A possible 
confounder is that the DXA analysis assumes a constant 
hydration of lean soft tissue, which is not always true as 
hydration varies with age, gender and disease.42 Excellent 
repeatability (CV) in the range 1–2 per cent for body fat and 
0.5–2 per cent for LT has been reported for DXA.

Since DXA only gives a two-dimensional (coronal) 
projection, it is not possible to obtain direct compart-
mental volumetric measurements, so regional volume esti-
mates are obtained indirectly using anatomical models. 
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For example, VAT and parts of the subcutaneous adipose 
tissue (SAT) are mixed and cannot be separated in the DXA 
image. The distribution between VAT and SAT then needs 
to be estimated from an anatomical model predicting the 
SAT thickness. Furthermore, the physical properties of the 
technology do not allow for measurements of ectopic fat in 
organs such as liver fat or muscle fat infiltration. However, 
due to its ability to estimate regional fat and measure LT, 
in combination with relatively high availability, DXA has 
been used for body composition analysis in a wide range of 
clinical applications.43

CT
CT gives a three-dimensional high-resolution image volume 
of the complete or selected parts of the body, computed 
from a large number of X-ray projections of the body from 
different angles. The known differences in attenuations of 
X-rays between lean soft tissue and AT can then be used 
to separate these tissues, as well as to determine mixtures 
between them. As opposed to the previously described tech-
niques, CT can accurately determine fat in skeletal muscle 
tissue16 and in the liver.44 It is, however, significantly less 
accurate for liver fat <5 per cent which limits its use to 
diagnose low-grade steatosis.44 Being a three-dimensional 
imaging technique, CT has the potential of giving direct 
volumetric measurements of organs and different AT 
depots. In practice, however, CT-based body composition 
analysis is in most cases limited to two-dimensional anal-
ysis of one or a limited number of axial slices of the body, 
leading to the utilization of the area measured as a proxy for 
the volume. There are two reasons for this limitation: first, 
it is important to keep the part of the body being scanned 
to a minimum in order to minimize the ionizing radiation 
dose.45 This is particularly important in the ethical consid-
erations of research studies on healthy subjects. Second, 
manual segmentation of different compartments in the 
images is a very labor intensive task, which can be reduced 
by limiting the analysis to a few slices rather than a complete 
three-dimensional volume. This approach, however, limits 
its precision since the exact locations of slices, in relation 
to internal organs, cannot be determined a priory and will 
therefore vary between scans. Nevertheless, CT, together 
with MRI, is today considered the gold standard for body 
composition analysis, in particular regional.

MRI
MRI uses the different magnetic properties of the nuclei of 
certain chemical elements (normally hydrogen in water and 
fat) in the cells to produce images of soft tissue in the body. 
A number of MRI-based methods for quantification of AT 
(eg, see the review by Hu et al46) and muscles47–52 have been 
developed and implemented in the past.

By using so-called ‘quantitative fat water imaging’, precise 
measurements of regional AT and LT, as well as diffuse fat 
infiltration in other organs, can be obtained. The basis for 
quantitative fat water imaging is fat water separated, or 
Dixon, imaging,53 where the different magnetic resonance 
frequencies of protons in fat and water are used for sepa-
rating the two signals into a fat image and a water image. 
Due to a number of undeterminable factors affecting the 
MR signal, an MR image is not calibrated on an absolute 

scale and therefore not quantitative in itself. But by using 
different postprocessing techniques, the image can be cali-
brated to quantitatively measure fat or AT. Examples of such 
methods are proton density fat fraction (PDFF)54 measuring 
the fraction of fat in MR-visible soft tissue and fat-refer-
enced MRI55–57 measuring the amount of AT in each voxel.

As opposed to CT and DXA, MRI does not use ionizing 
radiation, which enables true volumetric three-dimensional 
imaging even in healthy volunteers and infants. Still, many 
studies using MRI for body composition analysis have used 
one or a limited set of two-dimensional slices, mostly due 
to the lack of efficient image analysis tools for handling 
three-dimensional image segmentation. However, since 
there is no ionizing radiation limiting the image acquisition, 
the slices can be selected from a complete image volume, 
thereby reducing the uncertainty in their locations. Still, 
using a sparse set of slices as a proxy for the complete volume 
will inevitably negatively affect accuracy and precision as 
only a fraction of the data is used. It has, for example, been 
shown that single-slice MRI is poor at predicting VAT and 
SAT changes during weight loss.58 59

bODY COMPOsITION PROFILING UsING FAT-
REFERENCED MRI
Body composition profiling implies the simultaneous collec-
tion and analysis of a number of body composition param-
eters, including subcutaneous and visceral AT, ectopic fat 
such as liver and skeletal muscle fat and muscle volumes. 
Fat-referenced MRI is a methodology that enables all 
such measurements in one single rapid examination. This 
section gives a brief introduction to body composition 
profiling using fat-referenced MRI, together with a review 
of published validation results of the method. Finally, a 
previously unpublished validation study of the agreement 
between this method and DXA for measurements of body 
fat/AT, body LT and VAT is presented.

The body composition profiling methodology combines 
fat-referenced MRI with automated image segmentation of 
different compartments and was first described by Dahlqvist 
Leinhard et al.55 Different aspects of the method have been 
further described in other publications.47 60–62 The two key 
features of this method are that it produces quantitative 
fat-referenced images and that it uses a supervised auto-
mated segmentation tool.

In a quantitative fat-referenced image, the value in each 
image volume element (voxel) represents the amount of 
fat in that voxel in relation to the amount of fat in pure 
AT. Hence, a voxel in pure AT has a value of one and a 
voxel without any fat has the value zero. This means that 
the following can be measured: the total amount of AT in 
any given region by summation of the voxel values in that 
region, AT-free volume by removal of amount of AT from 
volume measurements of regional LT (eg, muscles) and frac-
tions of fat in specific internal organs, such as the liver.

The supervised automated segmentation tool enables an 
efficient way of segmenting different AT compartments, 
as well as different muscle groups, reducing the manual 
work to a few minutes, rather than hours, for analyzing 
a whole-body data set. Anatomical compartments, such 
as the visceral compartment and different muscle groups, 
are automatically segmented using predefined anatomical 
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atlases and the operator can then adjust the segmentations 
if needed. An example of such segmentations is illustrated 
in figure 1.

See online supplementary appendix 1 for a summary of 
how fat-referenced MRI is implemented in AMRA Profiler 
(AMRA Medical AB, Linköping, Sweden), which is the tool 
for body composition profiling that was used in the valida-
tion studies of fat-referenced MRI.

Precision and accuracy
In a previous study,61 the accuracy of body composition 
profiling using fat-referenced MRI, in terms of agreement 
with manual quantification of T1-weighted MR images, 
was evaluated on 23 (11 females, 12 males) subjects with 
an average BMI of 31.7±5.1 kg/m2 (range 22–46 kg/m2); 
age 36–66 years. There was no significant difference in 
the measured amount of VAT (4.73±1.99 vs 4.73±1.75 L, 
P=0.97). Furthermore, the agreement between the methods 
was excellent for both VAT (95 per cent limits of agree-
ment (LoA) −1.06 to 1.07 L) and abdominal subcutaneous 

AT (ASAT) (−0.36 to 1.60 L). However, a very small yet 
statistically significant difference in ASAT was observed 
(10.39±5.38 vs 9.78±5.36 L, P<0.001). Clearly this small 
difference has no clinical significance.

Test–retest repeatability and agreement with manual 
quantification for VAT was evaluated by Newman et al.63 
The study included 30 subjects with five subjects from 
each gender for each of the following categories of BMI: 
18–25 kg/m2, 25–30 kg/m2 and >30 kg/m2. Each subject was 
scanned twice with at least 20 min interval, during which 
the subject left the scanner room. There was no signifi-
cant difference between the evaluated method and manual 
quantification of VAT (P=0.73). Bland-Altman analysis 
of the test–retest repeatability showed a bias of −0.04 L 
(95 per cent LoA −0.12 to 0.13 L) for VAT and 0.05 L 
(95 per cent LoA −0.55 to 0.64 L) for ASAT. The CV was 
1.80 per cent for VAT and 2.98 per cent for ASAT using the 
method above. The CV for manual quantification of VAT 
was 6.33 per cent as a comparison.

Middleton et al evaluated the accuracy and repeat-
ability of VAT, ASAT and thigh muscle quantification by 
comparing with manual segmentation on 20 subjects.64 
Due to the laborious work with manual segmentation, 15 
two-dimensional axial slices were manually segmented in 
the abdominal region for VAT and ASAT and 5 slices over 
the thigh muscles. For repeatability assessment, the subjects 
were scanned three times, with the subject remaining in the 
same position on the scan table between scans 1 and 2 and 
with the subject removed from the table between scans 2 
and 3. The intraexamination (scans 1–2) repeatability test 
obtained a CV of 3.3 per cent for VAT, 2.2 per cent for 
ASAT and 1.5 per cent for total thigh muscle volume. For 
the inter-examination test (scans 2–3), the CVs were 3.6, 2. 
6 and 1.5 per cent for VAT, ASAT and thigh muscle volume, 
respectively. Good agreement with the manual measure-
ments in the 20 slices was observed for all measurements. 
Neither the slopes nor the intercepts of the regression lines 
were significantly different from those of the identity lines.

Test–retest repeatability of muscle quantification of left 
and right abdominal muscles, left and right, anterior and 
posterior thigh muscles and left and right lower limb muscles, 
as well as accuracy of lower leg muscle quantification, were 
evaluated by Thomas et al65 comparing the method above 
with manual segmentation. The study included 15 subjects 
of each gender, ranging from normal weight to obese. Each 
subject was scanned twice with at least 20 min interval, 
during which the subject left the scanner room. The intra-
class correlation (ICC) between the first and second scan 
was almost perfect (between 0.99 and 1.0) for all muscle 
groups. The 95 per cent LoA ranged from −0.04 to 0.02 L 
for the posterior thigh muscles to −0.15 to 0.08 L for the 
left lower limb. The lowest accuracy for the lower limbs was 
a bias of −0.08 L with 95 per cent LoA of −0.25 to 0.09 L.

Test–retest repeatability of measurements of VAT and 
ASAT volumes and volumes and fat infiltration of left 
and right posterior and anterior thigh muscles, lower leg 
muscles and abdominal muscles were evaluated by West et 
al on 36 sedentary postmenopausal women.66 Each subject 
was scanned twice, and the subjects were removed from the 
scanner room between the acquisitions. The intraexamina-
tion CV was 1.54 per cent for VAT, 1.06 per cent for ASAT, 
0.8–1.9 per cent for volumes of muscle groups (thigh, 

Figure 1 Example of segmentation of abdominal subcutaneous 
AT (ASAT), visceral AT (VAT) and 10 muscle groups from fat water 
separated MRI using fat-referenced MRI and multi-atlas image 
segmentation. To the left is the fat image with ASAT (blue) and VAT 
(red), and to the right is the water image with the different muscle 
groups colored. Reproduced with permission from AMRA Medical 
AB.  on A
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lower leg and abdomen) and 2.3–7.0 per cent for individual 
muscle volumes. The 95 per cent LoA was −0.13 to 0.10 L 
for VAT, −0.38 to 0.29 L for ASAT. The LoA for liver PDFF 
were within ±1.9 per cent, and for muscle fat infiltration, 
they were within ±2.06 per cent for muscle groups and 
within ±5.13 per cent for individual muscles.

The method’s reproducibility of fat-free muscle volume 
quantification between 1.5 T and 3 T MR scanners, as well 
as the agreement with manual segmentation, was investi-
gated on 11 different muscle groups.47 The ICC between 
the automated method and manual measurements was at 
least 0.97 for all muscle groups except in the arms. Except 
for the arms, the ICC between 1.5 T and 3 T data ranged 
from 0.97 (left lower leg) to 1.00 (left posterior thigh) with 
a mean difference volume ranging from 0.39 L (95 per cent 
LoA 0.01 to 0.77 L) (left abdomen) to 0.0 L (95 per cent 
LoA −0.10 to 0.09 L) (right lower leg). The muscles of the 
arms had worse accuracy and reproducibility due to diffi-
culties to include the arms in the field of view.

Agreement with ADP
A previous study67 compared AT measured using fat-refer-
enced MRI with total body fat measured by ADP. The ICC 
was 0.984. After converting the ADP body fat measures to 
AT volume (assuming that most of the fat resided in AT and a 
density of 0.9 kg/L for AT), a Bland-Altman analysis showed 
that ADP underestimated AT by 0.78 L on average, but the 
bias was strongly dependent on the level of adiposity with 
significant underestimation for lean subjects and significant 
overestimation for subjects with higher amounts of AT. 
Similar bias dependence has been observed when ADP has 
been compared with DXA31 and MRI.68

Agreement with bIA
Ulbrich et al69 investigated the agreement between fat-ref-
erenced MRI and BIA on 80 subjects between 20 and 62 
years with a BMI range from 17.5 to 26.2 kg/m2. The linear 

correlation between body fat mass measured by BIA and AT 
volume measured by MRI was 0.75 and 0.81 for females 
and males, respectively. The total AT measured by MRI was 
converted to total fat mass (again assuming that most of the 
fat resided in AT and using a constant density of 0.94 kg/L). 
Compared with MRI, the BIA underestimated the total 
fat with approximately 5 kg (±7 kg LoA) on average, this 
despite the fact that the MRI-based measurements of total 
body fat excluded the arms and lower legs. The highest 
linear correlation found between BIA and MRI-derived 
measures was 0.75 and 0.81 for females and males, respec-
tively. These correlations were found between BIA-derived 
body mass percentage and the MRI-derived ‘total AT index’ 
(total AT divided by body height squared).

Agreement with DXA
Methods and materials
The agreement between DXA and the fat-referenced MRI 
technique was assessed using data from the UK Biobank 
study,70 approved by the North West Multicenter Research 
Ethics Committee, UK, and with written informed consent 
obtained from all subjects prior to study entry. The age 
range for inclusion was 40–69 years of age. For the present 
analysis, participants were selected, out of the first 6214 
scanned, who had both DXA and MRI scans. One subject 
with obviously erroneous DXA values (2.7 kg total fat and 
6.8 kg LT) was excluded, yielding a total 4753 subjects 
(2502 females and 2251 males). All included MRI images 
were analyzable for VAT, ASAT and both thigh muscles 
according the predefined quality criteria.62 The BMI range 
was 16.4–54.3 with a mean of 26.2 kg/m2.

The MR images were acquired using a Siemens Aera 1.5 
T scanner (Syngo MR D13) (Siemens, Erlangen, Germany) 
with the dual-echo Dixon Vibe protocol, covering neck 
to knees as previously described.62 The MR images were 
analyzed using AMRA Profiler. The body AT and LT were 
measured from the bottom of the thigh muscles to level of 
the top of vertebrae T9 (figure 2). The LT was defined as 
the volume of soft tissue subtracted by the volume of AT.47

Whole-body DXA data were acquired using a GE-Lunar 
iDXA (GE Healthcare, Madison, Wisconsin, USA) with the 
subjects in supine position.71 The images were analyzed 
using the GE enCORE software by the radiographer at, or 
soon after, the scan. The GE iDXA estimates VAT within an 
automatically segmented region with the lower border at 
the top of the iliac crest and its height is set to 20 per cent 
of the distance from the top of the iliac crest to the base of 
the skull.72

Since the DXA and MRI analyses measure different enti-
ties (fat and LT mass vs AT and LT volume, respectively) 
and they do not cover the same part of the body, a linear 
model was estimated by linear regression between the MRI 
and DXA measurements using a training data set of 2376 
randomly selected subjects. The remaining 2377 subjects 
were then used for estimating the agreement between the 
techniques after linear transformation using the linear model 
(ie, validating the linear model). The MRI-based measure-
ments (L) were transformed to predict the DXA measure-
ments (kg) using the linear regression coefficients from the 
training data, and a Bland-Altman analysis was performed 
to investigate the agreement between MRI-derived and 

Figure 2 (A) The definition of lean and adipose tissue measured 
by MRI from the bottom of the thigh muscles to top of vertebrae 
T9 marked in blue color in the water (left) and fat (right) image. 
(B) An example of a dual-energy X-ray absorptiometry (DXA) 
image from the study cohort. DXA image copyright UK Biobank. 
Reprinted with permission.
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DXA-derived measurements in the validation data. To inves-
tigate the agreement between DXA and MRI-derived VAT 
measurements, a linear model was estimated between the 
DXA and MRI measurements. Of the 4669 subjects with 
available DXA VAT measurements, 2334 cases were used to 
estimate the model and the remaining 2335 subjects were 
used to validate the agreement between VAT measured 
by MRI and the transformed DXA measurements using 
Bland-Altman analysis.

Results
The linear regression between MRI and DXA was 1.23 x  
– 0.12 (kg/L) for body fat/AT and 1.88 x + 1.82 (kg/L) 
for body LT. The linear correlation coefficient, r, between 
DXA and the transformed MRI measurements was 0.99 for 
body fat and 0.97 for LT. The 95 per cent LoA from the 
Bland-Altman analysis were −2.25 to 2.31 kg for fat and 
−4.33 to 4.31 kg for LT (figure 3). The prediction error SD 
relative to the mean (CV) was 4.5 per cent for body fat and 
4.6 per cent for LT. The correlation between VAT measured 
by MRI and VAT as predicted by DXA was 0.97 and the 
LoA were −1.02 to 1.05 L, with CV=21 per cent (figure 4).

DIsCUssION
Densitometry, including ADP, shows relatively good preci-
sion and high correlation with MRI-based measurements 
of whole-body AT, but with a significant volume-depen-
dent bias. Since these methods only measure the volume 

or density of the body, they cannot be used for regional 
measurements and body composition profiling.

BIA is highly available and its relatively low cost is an 
advantage, which also makes it useful for consumer prod-
ucts. Furthermore, it can differentiate intracellular water 
from extracellular water, which is a unique capability 
of BIA. BIA can also, in principle, be used for regional 
measurements, but it is severely limited when it comes to 
measuring VAT or ectopic fat in internal organs.

DXA techniques have shown good accuracy when eval-
uated against MRI for whole-body measurements and very 
good repeatability. The prediction of whole-body fat and LT 
from MRI agrees well with DXA after a linear transformation, 
but less so for VAT. While the correlation between DXA and 
MRI-derived VAT was high (r=0.97), the agreement after 
a linear transformation was, however, much lower than for 
total body fat and body LT, with a CV >20 per cent. The 
high linear correlation, despite a modest agreement, can be 
explained by the very wide range of measured VAT volumes, 
ranging from almost 0 to >14 L. The CV for VAT is in line 
with the results by Kaul et al with a CV of 15.6 per cent for 
females and 25.9 per cent for males when comparing the 
same DXA model with CT.72 Park et al found a linear correla-
tion of 0.85 between VAT measured by DXA and MRI in 
a study including 90 non-obese men.73 However, Kamel et 
al found that the correlation was much lower (r=0.46) for 
obese men.74 The fact that the agreement is lower for obese 
subjects can also be observed in figure 4 where the prediction 

Figure 3 Correlation plots (upper row) between dual-energy X-ray absorptiometry (DXA) and corresponding measurement predicted 
from MRI using a linear transformation for body fat (left) and body lean tissue (right). The bottom row shows Bland-Altman plots of the 
agreement between DXA and corresponding measures predicted from MRI.
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error increases with increased VAT volume. Silver et al found 
an excellent correlation without significant bias between 
fat water MRI and DXA for ‘gross body adipose tissue’ but 
with a significant negative bias (MRI – DXA) for ‘total trunk 
adipose tissue’ as well as total and trunk LT.75 Interestingly, for 
DXA, the lowest precision is for fat in the arms, with reported 
CV up to 11 per cent.76 This is the same compartment that is 
difficult to measure with MRI due to signal loss in the outer 
parts of the field of view. A strength with DXA, compared 
with MRI, is the simultaneous assessment of bone mineral 
density and mass.

When comparing different technologies, both accu-
racy and precision are important. Accuracy, however, can 
be rather difficult to compare between technologies for 
several reasons. First, there is no ground truth available. 
Even though there is a growing consensus that tomographic 
methods are the gold standard that can be used to assess 
accuracy for other methods, they differ between themselves 
and are difficult to compare in terms of accuracy. Using 
physical phantoms is one way to assess accuracy, but they 
miss the difficulties caused by anatomical variations that we 
know can lead to different measurement errors. Automated 
tomographic imaging methods can be evaluated against 
manual methods, but this addresses only one of several 
important components in the measurement system—the 
segmentation of different compartments. Second, not all 
methods measure the same thing, so even if two technol-
ogies correlate strongly, there may be a significant bias if 
they measure different physical entities. For example, AT 
is not equivalent to fat—besides fat AT also contains water, 
protein and minerals. When comparing a method that 
measures AT in volume units, such as MRI, to a method 
that measures fat in weight units (eg, DXA), we have to 
convert one unit to the other using a density that is assumed 
to be constant, which again may not be always accurate.

Although this review has not focused on measurements of 
ectopic fat, this is an important component in body compo-
sition profiling, especially for understanding metabolic 
status and assessing risk. Among the techniques discussed 
here, CT and quantitative MRI are the only methods that 
can quantify local diffuse infiltration of AT and ectopic fat. 

(Non-invasive measurements of ectopic fat, in particular 
liver fat, are commonly done by MR spectroscopy (MRS), 
but since MRS only measures local substance concentrations 
and not absolute amounts of fat, AT or LT, this technology 
was not included in this study.) While it is possible—and 
sometimes necessary—to use different equipment for 
different measurements in a study, it is often desirable to 
keep the number of different examinations and modali-
ties to a minimum in order to optimize the work flow. By 
using quantitative MRI, or CT if the radiation dose is not 
a concern, a large number of metabolically relevant body 
composition parameters can be measured with high accu-
racy and precision in a single examination.

A comparison of the capabilities of different measure-
ments of the techniques discussed above is summarized in 
table 1.

CONCLUsION
There are several methods available that can measure 
whole-body AT or fat and LT. In terms of precision and 
accuracy, DXA and MRI are comparable as they show excel-
lent agreement after a linear transformation. However, the 
agreement is much lower for compartmental measurements 
such as VAT. Moreover, MRI gives access to accurate and 
direct measurements of diffuse infiltration of AT in muscles 
and ectopic fat (eg, liver fat). Rapid MRI scanning protocols, 
in combination with efficient image analysis methods, have 

Table 1 Comparison of the capabilities of different techniques 
for body composition analysis

ADP bIA DXA CT MRI

Total fat Yes  Yes Yes Yes Yes

Total lean tissue Yes Yes Yes Yes Yes

VAT No No Approximate Yes Yes

Volume of individual muscles No No No Yes Yes

Diffuse fat infiltration No No No Yes Yes

Without ionizing radiation Yes Yes No (low) No Yes

ADP, air displacement plethysmography; BIA, bioelectrical impedance 
analysis; DXA, dual-energy X-ray absorptiometry; VAT, visceral adipose tissue.

Figure 4 Correlation between visceral adipose tissue (VAT) predicted by dual-energy X-ray absorptiometry (DXA) and VAT measured by 
MRI (left) and Bland-Altman plot showing the agreement (liters) between the methods (right).
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promoted MRI to a competitive option for advanced body 
composition assessment, thus enabling a more complete 
description of a person’s body composition profile from a 
single examination.
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