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Significance of this study

What is already known about this subject?
 ► The Wnt/β-catenin signaling pathway 
is involved in the development of 
chemoresistance in tumor cells.

 ► Increased expression of leucine-rich 
G-protein coupled receptor 5 (LGR5) 
confers chemoresistance to gastric cancer 
cells.

 ► Knockdown of death-associated protein-3 
(DAP3) promotes chemoresistance in 
gastric cancer cells.

What are the new findings?
 ► Depletion of DAP3 stimulates nuclear 
accumulation of β-catenin and enhances 
β-catenin-dependent transcriptional 
activity.

 ► Knockdown of LGR5 resensitizes 
DAP3-depleted gastric cancer cells to 
chemotherapeutic drugs.

 ► Bcl-2 is identified as a key mediator of 
LGR5-induced apoptosis resistance in 
gastric cancer cells.

How might these results change the focus 
of research or clinical practice?

 ► Targeting LGR5 may provide a novel 
strategy to overcome chemoresistance in 
DAP3-deficient gastric cancer cells.

AbSTrACT
Previously, we demonstrated that death-associated 
protein-3 (DAP3) loss drives chemoresistance in 
gastric cancer cells. In the present study, we aimed 
to determine the underlying molecular mechanism. 
The effect of DAP3 silencing on β-catenin signaling 
was assessed. The direct mediator of DAP3 silencing-
induced chemoresistance was identified. Depletion of 
DAP3 stimulates nuclear accumulation of β-catenin 
and enhances β-catenin-dependent transcriptional 
activity in gastric cancer cells. However, the protein 
kinase B , , extracellular regulated protein kinase 
and signal transducer and activator of transcription 
3 signaling pathways remain unaffected by DAP3 
loss. We found that the downstream target gene 
LGR5 (leucine-rich G-protein coupled receptor 5) 
is upregulated in DAP3-depleted gastric cancer 
cells. Moreover, knockdown of LGR5 resensitizes 
DAP3-depleted gastric cancer cells to 5-fluorouracil 
(5-FU) and oxaliplatin. We also observed that 
ectopic expression of LGR5 reduces apoptosis in 
gastric cancer cells on treatment with 5-FU and 
oxaliplatin, which is accompanied by prevention of 
caspase-3 cleavage. The antiapoptotic protein Bcl-
2 is identified as a key mediator of LGR5-induced 
apoptosis resistance in gastric cancer cells. The 
present findings indicate that DAP3 deficiency-
induced chemoresistance in gastric cancer is at least 
partially mediated through the β-catenin/LGR5/Bcl-2 
axis. Targeting LGR5 may provide a novel strategy to 
overcome chemoresistance in DAP3-deficient gastric 
cancer cells.

InTrOduCTIOn
Gastric cancer is one of the most lethal malig-
nancies worldwide.1 Many patients with 
gastric cancer, in particular in developing coun-
tries, are diagnosed at a late stage, which leads 
to a low rate of complete resection. Adjuvant 
chemotherapy after curative gastrectomy is 
considered the standard treatment for advanced 
gastric cancer.2 Although patients gain survival 
benefits from adjuvant chemotherapy,3 the 
long-term outcome is limited by acquired or 
intrinsic chemoresistance of tumor cells.4 5 
Thus, understanding of the molecular mecha-
nisms that induce drug resistance will improve 

the efficacy of chemotherapy in patients with 
advanced gastric cancer.

The Wnt/β-catenin signaling pathway is 
involved in the development of chemoresis-
tance in tumor cells.6 7 Ng et al reported that 
activation of the β-catenin pathway is respon-
sible for Slit3 loss-induced chemoresistance in 
hepatocellular carcinoma.6 Inhibition of the 
Wnt/β-catenin pathway was found to prevent 
chemoresistance in cancer cells,8 suggesting that 
the β-catenin pathway represents a promising 
therapeutic target to overcome chemoresis-
tance. Leucine-rich G-protein coupled receptor 
5 (LGR5) serves as an important downstream 
target of β-catenin signaling.9 10 LGR5 is 
frequently upregulated in many cancer types 

 on A
pril 10, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2018-000934 on 20 F
ebruary 2019. D

ow
nloaded from

 

http://jim.bmj.com/
http://crossmark.crossref.org/


857Jia Y, et al. J Investig Med 2019;67:856–861. doi:10.1136/jim-2018-000934

Original research

such as colorectal cancer and breast cancer.11 12 Cao et al 
showed that LGR5 has the capacity to enhance stemness 
and chemoresistance in cervical cancer cells.10 Similarly, 
increased expression of LGR5 confers chemoresistance to 
gastric cancer cells.13

Death-associated protein-3 (DAP3) as a member of the 
death-associated protein family is known to modulate 
apoptosis.14 Mariani et al reported that DAP3 expression is 
elevated in invasive glioblastoma cells.15 Ectopic expression 
of DAP3 leads to increased apoptosis in cells after detach-
ment.16 Our previous work has reported that knockdown 
of DAP3 promotes chemoresistance in gastric cancer cells.17 
However, the detailed mechanism involved has not been 
clarified.

In the present study, we aimed to identify the key signaling 
pathways involved in DAP3 depletion-induced chemoresis-
tance and to search for direct mediators of DPA3 action in 
gastric cancer.

MATerIAlS And MeTHOdS
Cell culture and treatment
HGC27 and MGC803 cells were obtained from the Amer-
ican Type Culture Collection (ATCC, Manassas, Virginia, 
USA) and grown in ATCC-recommended media supple-
mented with 10% fetal bovine serum (Invitrogen, Carlsbad, 
California, USA). Cells were treated with 5-fluorouracil 
(5-FU) and oxaliplatin as described previously.17

Plasmids, sirnAs, and transfections
The plasmid expressing a short hairpin RNA targeting 
DAP3 was purchased from Santa Cruz Biotechnology (Santa 
Cruz, California, USA). LGR5-targeting small interfering 
RNA (siRNA), Bcl-2-targeting siRNA, and negative control 
siRNA were purchased from Thermo Fisher Scientific 
(Waltham, Massachusetts, USA). LGR5-expressing plasmid 
was obtained from OriGene Technologies (Rockville, Mary-
land, USA). Cell transfection was performed using Lipofect-
amine 2000 transfection reagent (Invitrogen), according to 
the manufacturer’s protocol.

luciferase reporter assay
For measurement of β-catenin transcriptional activity, 
TOPFlash/FOPFlash luciferase reporter assay was 
conducted as described previously.18 In brief, cells were 
transfected with the firefly luciferase reporter TOPFlash 
or TOP-FOP plasmid, together with the Renilla luciferase 
reporter pRL-TK (Promega, Fitchburg, Wisconsin, USA). 
Twenty-four hours after transfection, the cells were lysed. 
The luciferase activity of lysate was determined using the 
Dual Luciferase Assay System (Promega). The firefly lucif-
erase activity was normalized to the activity of the Renilla 
luciferase.

Subcellular fractionation and western blot analysis
Nuclear and cytoplasmic fractionation was prepared using 
the BioVision Nuclear/Cytosolic Fractionation Kit (Moun-
tain View, California, USA) following the manufacturer’s 
instruction. Protein samples were separated on sodium 
dodecyl sulfate acrylamide gels and transferred on poly-
vinylidene difluorid (PVDF) membranes. The membranes 
were incubated overnight at 4°C with primary antibodies 

recognizing total β-catenin, non-phosphorylated active 
β-catenin, phospho-glycogen synthase kinase 3 beta 
(GSK-3β), LGR5, cleaved caspase-3, Bcl-2, Bcl-xL, Mcl-1, 
histone h3, and glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH; Santa Cruz Biotechnology). Chemiluminescent 
signals were developed using chemiluminescence (Ther-
mo-Scientific) and quantified by densitometry.

Quantitative real-time PCr analysis
Total RNA was isolated using Trizol reagent, and reverse 
transcription was performed using SuperScript II (Invit-
rogen). Quantitative real-time PCR was conducted using 
the SYBR Green PCR Master Mix (Thermo Fisher Scien-
tific). The PCR primers were as follows: Lgr5 forward, 
5′- TTTG GACA AGGG AGAC CTGG AGAAT-3′ and Lgr5 
reverse, 5′- GAAA GCCA CAGG GCAG TTTAGGAT-3′.19 
GAPDH served as the internal control. Relative levels of 
Lgr5 transcripts were calculated using the 2–ΔΔCT method.20

Cell viability assay
Cells were seeded onto 96-well plates at a density of 
5×103 cells/well and treated with 5-FU or oxaliplatin 
for 48 hours. Cells were added with 3-(4,5-dimethylth-
iazol-2-yl)−2,5-diphenyltetrazolium bromide (MTT; 
0.5 mg/mL; Sigma-Aldrich, St Louis, Missouri, USA) and 
incubated for 4 hours at 37°C. Absorbance was measured 
at 570 nm.

Apoptosis
After treatment with 5-FU or oxaliplatin for 48 hours, 
cells were fixed and stained with Annexin V-FITC and 
propidium iodide (Beyotime, Haimen, China) according 
to the manufacturer’s protocol. Stained cells were analyzed 
by flow cytometry (FACSCalibur, BD Biosciences, San Jose, 
California, USA).

Statistics
All values are reported as mean±SD and analyzed by 
Student’s t-test or one-way analysis of variance. P<0.05 
was considered statistically significant.

reSulTS
depletion of dAP3 enhances β-catenin activation
Depletion of DAP3 markedly raised the levels of total 
β-catenin and non-phosphorylated active β-catenin in 
both MGC803 and HGC27 cells (figure 1A). Moreover, 
DAP3 knockdown led to accumulation of β-catenin in 
the nucleus (figure 1B). However, DAP3 deficiency had 
no significant impact on the activation of protein kinase 
B (Akt), extracellular regulated protein kinase (ERK), and 
signal transducer and activator of transcription 3 (STAT3) 
signaling (figure 1A). To validate the regulation of β-cat-
enin signaling, we transiently transfected a β-catenin/TCF4 
reporter construct into DAP3-depleted gastric cancer cells. 
Luciferase reporter assay demonstrated that DAP3 deple-
tion enhanced β-catenin-dependent transcriptional activity 
(figure 1C). It has been well accepted that phosphorylation 
and degradation of GSK-3β are associated with β-catenin 
activation.9 We found that DAP3 knockdown resulted in 
increased phosphorylation of GSK-3β (figure 1D). Taken 
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Figure 1 Depletion of DAP3 enhances β-catenin activation. 
(A) Western blot analysis of indicated proteins in gastric cancer 
cells transfected with control shRNA (shCtrl) or DAP3-targeting 
shRNA (shDAP3). (B) Western blot analysis of β-catenin protein in 
subcellular fractions. Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) and histone H3 were used as the control for the 
cytoplasmic and nuclear fraction, respectively. (C) Luciferase 
reporter assay. DAP3 depletion leads to an increase in β-catenin-
dependent transcriptional activity. *P<0.05. (D) Western blot 
analysis of phosphorylation of glycogen synthase kinase 3 beta 
(GSK-3β). DAP3, death-associated protein-3; shRNA, short hairpin 
RNA; Akt, protein kinase B; ERK, extracellular regulated protein 
kinase; STAT3, signal transducer and activator of transcription 3. 

Figure 2 LGR5 is induced in DAP3-depleted gastric cancer cells. 
(A) Real-time PCR analysis of LGR5 mRNA levels in gastric cancer 
cells transfected with control shRNA (shCtrl) or DAP3-targeting 
shRNA (shDAP3). *P<0.05. (B) Western blot analysis of LGR5 
protein levels. DAP3, death-associated protein-3; LGR5, leucine-
rich G-protein coupled receptor 5; shRNA, short hairpin RNA; 
GAPDH, glyceraldehyde 3-phosphate dehydrogenase. 

together, DAP3 acts as a negative regulator of β-catenin 
signaling in gastric cancer.

lGr5 is induced in dAP3-depleted gastric cancer cells
LGR5 is known as an important target of β-catenin and can 
modulate chemosensitivity of cancer cells.9 10 Therefore, we 
asked whether DAP3 depletion has an impact on the expres-
sion of LGR5. To address this, we examined the expression 
of LGR5 in DAP3-depleted gastric cancer cells. It was found 
that DAP3 depletion resulted in a significant increase in the 
level of LGR5 transcript in MGC803 and HGC27 cells, 
compared with corresponding control cells (figure 2A). 
Similar change was observed at the protein level, as assessed 
by western blot analysis (figure 2B). These results indicate 
the upregulation of LGR5 after DAP3 depletion.

lGr5 silencing reverses dAP3 depletion-driven 
chemoresistance in gastric cancer cells
Next, we checked whether the induction of LGR5 accounts 
for DAP3 depletion-driven chemoresistance in gastric cancer 
cells. To resolve this, we knocked down LGR5 expression 
in DAP3-depleted gastric cancer cells. Transfection with 
specific LGR5-targeting siRNAs effectively downregulated 
the expression of LGR5 in DAP3-deficient MGC803 and 
HGC27 cells (figure 3A,B). When LGR5 expression was 
inhibited, DAP3 silencing-mediated chemoresistance to 
5-FU (figure 3C) and oxaliplatin (figure 3D) was abrogated. 
Together, LGR5 plays a pivotal role in inducing chemoresis-
tance owing to DAP3 deficiency.

lGr5 induces apoptosis resistance in gastric cancer cells
Next, we tested whether LGR5 overexpression can stimulate 
apoptosis resistance to chemotherapeutic drugs. To this end, 
we assessed apoptotic responses in LGR5-overexpressing 
cells after exposure to 5-FU and oxaliplatin. It was found 
that 5-FU and oxaliplatin treatment significantly induced 
apoptosis in vector-transfected MGC803 and HGC27 cells 
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Figure 3 LGR5 silencing reverses DAP3 depletion-driven chemoresistance in gastric cancer cells. (A and B) Transfection with specific 
LGR5-targeting siRNAs effectively downregulated the expression of LGR5, as determined by real-time PCR (A) and western blot (B) 
analyses. (C and D) Gastric cancer cells transfected with indicated constructs were treated with different concentrations of 5-FU (C) and 
oxaliplatin (OXA) (D) and tested for viability. *P<0.05. 5-FU, 5-fluorouracil; DAP3, death-associated protein-3; LGR5, leucine-rich G-protein 
coupled receptor 5; shDAP3, DAP3-targeting shRNA; shRNA, short hairpin RNA; siRNA, small interfering RNA; GAPDH, glyceraldehyde 
3-phosphate dehydrogenase. 

(figure 4A,B). LGR5 overexpression prevented the apop-
tosis induced by these chemotherapeutic drugs. Moreover, 
5-FU and oxaliplatin promoted the cleavage of caspase-3 in 
gastric cancer cells, and such effect was abolished by LGR5 
overexpression (figure 4C). The data indicate that LGR5 
confers resistance to 5-FU and oxaliplatin in gastric cancer 
cells.

upregulation of bcl-2 accounts for lGr5-mediated 
apoptosis resistance
To get insight into the mechanism by which LGR5 promotes 
chemoresistance, we measured the expression of multiple 

antiapoptotic proteins by western blot analysis. We found 
that ectopic expression of LGR5 elevated the protein level 
of Bcl-2, but not Bcl-xL or Mcl-1, in gastric cancer cells 
(figure 5A). Most importantly, knockdown of Bcl-2 reversed 
LGR5-mediated apoptosis resistance in gastric cancer cells 
after treatment with 5-FU and oxaliplatin (figure 5B,C). 
Taken together, LGR5-induced chemoresistance is ascribed 
to upregulation of the antiapoptotic protein Bcl-2.

dISCuSSIOn
In this study, we show that DAP3 depletion leads to increased 
levels of active β-catenin and nuclear accumulation of 
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Figure 4 LGR5 induces apoptosis resistance in gastric 
cancer cells. (A) Apoptosis analysis by flow cytometry. LGR5-
overexpressing cells and control cells were treated with 8 µg/mL 
5-FU for 48 hours and analyzed for apoptosis. Representative dot 
plots of flow cytometry are shown. (B) Quantification of apoptosis 
in gastric cancer cells after treatment with 8 µg/mL 5-FU or 32 µg/
mL oxaliplatin for 48 hours. *P<0.05. (C) Western blot analysis 
of cleaved caspase-3 levels. 5-FU, 5-fluorouracil; LGR5, leucine-
rich G-protein coupled receptor 5; PI, propidium iodide; GAPDH, 
glyceraldehyde 3-phosphate dehydrogenase. 

Figure 5 Upregulation of Bcl-2 accounts for LGR5-mediated 
apoptosis resistance. (A) Western blot analysis of indicated 
proteins in gastric cancer cells transfected with LGR5-expressing 
plasmid or empty vector. (B) Gastric cancer cells transfected 
with indicated constructs were treated with 8 µg/mL 5-FU for 
48 hours and analyzed for apoptosis. (C) Gastric cancer cells 
transfected with indicated constructs were treated with 32 µg/mL 
oxaliplatin for 48 hours and analyzed for apoptosis. *P<0.05. 5-FU, 
5-fluorouracil; LGR5, leucine-rich G-protein coupled receptor 5; 
siRNA, small interfering RNA; GAPDH, glyceraldehyde 3-phosphate 
dehydrogenase. 

β-catenin in gastric cancer cells, which is accompanied by 
enhanced phosphorylation of GSK-3β. Luciferase reporter 
assays indicate the induction of β-catenin-dependent tran-
scriptional activity in DAP3-depleted cells, suggesting DAP3 
as an endogenous inhibitor of β-catenin signaling. Activation 
of β-catenin signaling is considered as an important cause of 
chemoresistance in tumor cells.6 7 Santos et al reported that 
SOX9 upregulation promotes stemness and chemoresis-
tance in gastric cancer cells through activation of Wnt/β-cat-
enin signaling.21 Similarly, the Wnt/β-catenin signaling 
pathway is involved in tissue transglutaminase-1-induced 

chemoresistance in gastric cancer cells.22 These studies, 
combined with our findings, suggest that DAP3 silenc-
ing-induced chemoresistance is likely mediated through 
activation of β-catenin signaling.

Our data also demonstrate that LGR5, a downstream 
target gene of β-catenin, is upregulated in DAP3-depleted 
gastric cancer cells. To validate the involvement of LGR5 
in the action of DAP3, we knocked down the expression of 
LGR5. Of note, LGR5 knockdown resensitizes DAP3-defi-
cient MGC803 and HGC27 cells to 5-FU and oxaliplatin, 
indicating that LGR5 is required for DAP3 deficiency-in-
duced chemoresistance in gastric cancer cells. In line with 
our findings, LGR5 upregulation contributes to chemore-
sistance in multiple cancer types, including gastric cancer, 
cervical cancer, and colorectal cancer.10 13 23 LGR5 is known 
to promote the activation of β-catenin signaling in cancer 
cells,24 which provides an explanation for the ability of 
LGR5 to induce chemoresistance. Although we provide 
evidence for the involvement of LGR5 in DAP3 loss-in-
duced chemoresistance, we cannot exclude the possibility 
that other β-catenin target genes may also mediate the 
activity of DAP3.
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LGR5 is known to act as a prosurvival factor in several 
types of cancer cells.25 26 Knockdown of LGR5 was observed 
to induce apoptosis in breast cancer cells.25 Hsu et al 
reported that LGR5 silencing stimulates mitochondria-me-
diated apoptosis in colorectal cancer cells.27 In conjunction 
with these observations, our data demonstrate that LGR5 
overexpression attenuates the apoptotic response to 5-FU 
and oxaliplatin in gastric cancer cells. At the molecular 
level, caspase-3 cleavage was abolished after LGR5 overex-
pression, confirming that LGR5 contributes to the survival 
of gastric cancer cells on treatment with chemotherapeutic 
drugs. Our data further reveal that LGR5 overexpression 
selectively induces the expression of the antiapoptotic 
protein Bcl-2. Downregulation of Bcl-2 impairs LGR5-me-
diated apoptosis resistance to chemotherapeutic drugs. 
Taken together, LGR5 induces chemoresistance in gastric 
cancer cells at least partially through upregulation of Bcl-2. 
Future work will be needed to identify the key mediators in 
the induction of Bcl-2 by LGR5.

In summary, our results show that the β-catenin/LGR5 
axis is involved in DAP3 loss-induced chemoresistance in 
gastric cancer cells. LGR5 overexpression confers survival 
advantage to gastric cancer cells on exposure to chemo-
therapeutic drugs, which is largely attributed to induction 
of Bcl-2 and prevention of apoptotic response. Our data 
suggest that targeting LGR5 may be beneficial in over-
coming chemoresistance in DAP3-deficient gastric cancer 
cells.
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