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Abstract
Recurrent hospitalizations are common in 
longitudinal studies; however, many forms of 
cumulative event analyses assume recurrent events 
are independent. We explore the presence of event 
dependence when readmissions are spaced apart by 
at least 30 and 60 days. We set up a comparative 
framework with the assumption that patients with 
emergency percutaneous coronary intervention (PCI) 
will be at higher risk for recurrent cardiovascular 
readmissions than those with elective procedures. A 
retrospective study of patients who underwent PCI 
(January 2008–December 2012) with their follow-
up information obtained from a regional database 
for hospitalization was conducted. Conditional gap 
time (CG), frailty gamma (FG) and conditional frailty 
models (CFM) were constructed to evaluate the 
dependence of events. Relative bias (%RB) in point 
estimates using CFM as the reference was calculated 
for comparison of the models. Among 4380 patients, 
emergent cases were at higher risk as compared 
with elective cases for recurrent events in different 
statistical models and time-spaced data sets, but the 
magnitude of HRs varied across the models (adjusted 
HR [95% CI]: all readmissions [unstructured data]—
CG 1.16 [1.09 to 1.22], FG 1.45 [1.33 to 1.57], 
CFM 1.24 [1.16 to 1.32]; 30-day spaced—CG1.14 
[1.08 to 1.21], FG 1.28 [1.17 to 1.39], CFM 1.17 
[1.10 to 1.26]; and 60-day spaced—CG 1.14 [1.07 
to 1.22], FG 1.23 [1.13 to 1.34] CFM 1.18 [1.09 
to 1.26]). For all of the time-spaced readmissions, 
we found that the values of %RB were closer to 
the conditional models, suggesting that event 
dependence dominated the data despite attempts 
to create independence by increasing the space 
in time between admissions. Our analysis showed 
that independent of the intercurrent event duration, 
prior events have an influence on future events. 
Hence, event dependence should be accounted for 
when analyzing recurrent events and challenges 
contemporary methods for such analysis.

Introduction
Recurrent hospital admissions after percu-
taneous coronary intervention (PCI) occur 
between 8.9% and 22% of subjects and 
pose a significant burden to the hospital and 

healthcare system.1  Recurrent hospitalizations 
are common in longitudinal studies; however, 
most trials employ composite endpoints based 
on the time to the first event, which results 
in a substantial loss of information on the 
natural course of the health condition. Use 
of the  traditional time-to-first event analysis 
does not measure the future events that occur 
following the first event or if  the intensity of 
the events differs. Hence, they do not account 
for the actual burden of the disease. Several 
statistical models have been proposed for the 
analysis of recurrent event data; however, 
most of these models assume that subsequent 
event times are independent of one another.2 
Most of these recurrent events are correlated, 
and the underlying data structure must be 
accounted for when choosing the statistical 

Significance of this study

What is already known about this subject?
►► Recurrent hospitalizations are common in 
longitudinal studies.

►► Recurrent events are considered as 
independent events.

►► Different models are employed for 
analyzing recurrent events.

What are the new findings?
►► Traditional time-to-first event analysis 
does not measure the future events that 
occur following the first event and hence 
does not measure the actual burden of the 
disease.

►► Emergent as compared with elective 
percutaneous coronary intervention 
patients were at higher risk for recurrent 
cardiovascular readmissions.

►► Independent of the intercurrent event 
duration, prior events have an influence on 
future events.

How might these results change the focus 
of research or clinical practice?

►► Event dependence should be accounted for 
in recurrent event analysis.

 on A
pril 23, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2018-000873 on 18 January 2019. D
ow

nloaded from
 

http://jim.bmj.com/
http://crossmark.crossref.org/


944 Vasudevan A, et al. J Investig Med 2019;67:943–949. doi:10.1136/jim-2018-000873

Original research

model. Variance-corrected and frailty effect models, which 
are variants of Cox  models, are employed to account 
for the correlation. The Andersen-Gill model, Prentice, 
Williamson, and Peterson conditional model, and the 
marginal risk Wei, Lin, and Weissfeld models are the most 
commonly used variance-corrected models.3–6 The condi-
tional model stratifies the data by event allowing the base-
line hazard to vary between the events, which accounts for 
within-subject correlation due to event dependence.2 The 
frailty effects models incorporate heterogeneity as a random 
effect, which captures the unobserved effects among the 
individuals. This model assumes that some subjects may 
be inherently more prone to experience repeated events 
than others.7 8 The conditional frailty model proposed by 
Box-Steffensmeier and De Boef9 accounts for both event 
dependence and heterogeneity among the subjects. Admis-
sions within 30 days are considered to be related, and it is 
assumed that the dependence diminishes as the events are 
spaced further. However, there are instances when read-
missions happen later than 30 days and are strongly related 
to the prior event. In this study, we explore the presence of 
event dependence when readmissions are spaced apart by 
at least 30 and 60 days. We also hypothesize that patients 
undergoing emergency PCI will be at higher risk for recur-
rent events than those undergoing elective PCI.

Methods
This is a retrospective study including all patients who 
underwent PCI at Baylor Heart and Vascular Hospital 
and Baylor University Medical Center, Dallas, Texas, from 
January 2008 to December 2012. The data were abstracted 
from the information captured for the American College 
of Cardiology CathPCI Registry. Readmission details for 
3 years following PCI were obtained from the Dallas-Fort 
Worth Hospital Council Foundation. Dallas-Fort Worth 
Hospital Council Foundation maintains a comprehensive 
Regional Master Patient Index database,  which maintains 
data on patients admitted to different hospitals in the North 
Texas region.10 Only readmission due to cardiovascular (CV) 
reasons were included in the analysis and were restricted 
based on the International Classification of Diseases, Ninth 
Revision, Clinical Modification codes.11  Mortality was 
validated by obtaining data from the  Death Master File 
provided by the National Technical Information Service12 
for cases where vital status was uncertain. Event dependence 
is defined as the relationship between events indicating that 
the occurrence of an event influences or is related to the 
following event. The inclusion of the frailty term in these 
models indicates the heterogeneity that is caused by the 
unmeasured covariates and is a random-effect model for 
time event data analysis.

Data sets based on spacing of events
We created different data  sets based on the time to the 
events. The first data set (all non-fatal readmissions) 
included all CV readmissions post-PCI that happened over 
the period of 3 years. We then created a data set in which 
the events were spaced at least over 30 days. Any event that 
occurred within 30 days was considered as a single event 
(30-day spaced readmissions). Patients with more than one 
event within 30 days were considered as one event and all 
events were systematically spaced 30 days. Another data set 
was created in which the events were spaced over 60 days 
(60-day spaced readmissions). Similar to the 30-day spacing, 
all events were spaced 60 days. Any event between 0 and 60 
days of the prior event/index procedure was considered as 
a single event.

Statistical analysis
Statistical analyses were conducted using STATA V.14.2 and 
R V.3.2.1. Differences in baseline characteristics, procedural 
details, and complications between emergency and elective 
procedures were compared using χ2/Fisher’s exact tests for 
proportions and Student’s t-test/Wilcoxon rank-sum test for 
continuous variables where applicable. The independent 
risk factors were identified by the multivariable analysis by 
including all the factors that were significant by bivariate 
analysis. The objective of this paper was to identify the risk 
factors for readmissions and to explore the dependence 
between events. Because we did not aim to compare hospi-
tals or time cohorts, we did not employ a risk-standardized 
approach.

Fatal and non-fatal events
Including both fatal and non-fatal readmissions, we 
conducted a time-to-event analysis. The HRs of the 
different covariates were calculated separately for the first 

Figure 1  Patient inclusion flow chart.

Figure 2  Adjusted HRs for emergent percutaneous coronary 
intervention (PCI) (event 1 through event 10). Adjusted for age, 
gender and comorbidities (diabetes, hypertension, cerebrovascular 
accident, hyperlipidemia, peripheral vascular disease, chronic lung 
disease and chronic heart failure).
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through the tenth subsequent events by a Cox proportional 
hazard survival analysis. A forest plot was constructed to 
represent the adjusted HRs for the emergency scheduling of 
the individual recurrent events.

Non-fatal readmissions
Three different models were constructed to study the details 
on event dependence and heterogeneity: (1) the  condi-
tional gap time model (CG) assumed the failure times were 
conditional on the occurrence of the prior event and thus 
used information about the time in between successive 
repeated events; (2) the frailty gamma model (FG) included 
heterogeneity as a random-effects term in the model which 
captured the unobserved effects among the individuals 
and thus allowed some subjects to be more prone to expe-
riencing recurrent events; and  (3) the  conditional frailty 
model (CFM) proposed by Box-Steffensmeier and De Boef9 
accounted for both the event dependence by stratification 
and captured heterogeneity by including a random effect. 
In order to minimize the problems with convergence in 
the presence of many event-order strata, we set the limit of 
events per individual to 11. Any event greater than 10 was 
considered to be equal to 11 in our analysis.

Relative bias
We compared the results of the three models using the rela-
tive bias (%RB) in point estimates using the CFM as the 
reference.13

%RB= (HR [FG or CG] − HR [CFM])/HR (CFM)×100

Table 1  Demographics and clinical characteristics

Emergent 
(n=1835)

Elective 
(n=2883) P value

Age (years), mean±SD 61.2±12.0 64.7±10.9 <0.001

Male, n (%) 1224 (66.7) 1973 (68.4) 0.21

Diabetes mellitus, n (%) 633 (34.5) 1134 (39.3) 0.001

Hypertension, n (%) 1482 (80.8) 2600 (90.2) <0.001

Hyperlipidemia, n (%) 1618 (88.2) 2729 (94.7) <0.001

Cerebrovascular accident, n (%) 144 (7.9) 236 (8.2) 0.68

Peripheral vascular disease, n (%) 186 (10.1) 392 (13.6) <0.001

Chronic lung disease, n (%) 155 (8.5) 200 (6.9) 0.06

Chronic heart failure, n (%) 283 (15.4) 443 (15.4) 0.96

Family history of coronary artery 
disease, n (%)

574 (31.4) 1016 (35.4) 0.005

Prior percutaneous coronary artery 
intervention, n (%)

532 (28.9) 1128 (39.1) <0.001

Prior coronary artery bypass grafting, 
n (%)

260 (14.2) 703 (24.4) <0.001

Figure 3  Distribution of events for the time-spaced readmissions. 30D, 30 days; 60D, 60 days; CV, cardiovascular; PCI, percutaneous 
coronary intervention.
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We postulated that the estimates of the conditional model 
would be close to the CFM in circumstances where event 
dependence was strong, while the estimates of the frailty 
model would be closer to the estimates of the CFM in situ-
ations where heterogeneity was strong.

Results
There were a total of 4758 patients who had an index 
PCI during our study period. The mean age of the cohort 
was 63.4±11.5 years and 67.7% were male. Of these, 
1867 (39.2%)  had an emergency procedure. A total of 40 
(0.8%) patients died during the index procedure and 338 
(7.1%) died during the 3-year follow-up. A majority of the 
patients who died had undergone an emergency procedure 
(203/378) (figure  1). The crude mortality rate per 1000 
patients was 109 deaths for emergent procedures vs 61 
deaths for elective procedures. The number of readmis-
sions ranged between 1 and 60 (median=2) for emergent 
procedures and between 1 and 47 (median=2) for elective 
procedures.

Fatal and non-fatal events
The characteristics of the patients excluding those who died 
(n=40, 0.8%) during the index admission are presented 
in table 1. By Cox proportional hazards survival analysis, 
adjusted HRs were calculated individually for the first 
through the tenth event. Those with an emergent PCI had 
an increased risk for CV readmission after adjusting for age, 
gender and comorbidities  (diabetes, hypertension, cere-
brovascular accident, hyperlipidemia, peripheral vascular 
disease, chronic lung disease and chronic heart failure).

Furthermore, this risk stochastically increased for subse-
quent CV readmissions. For example, those with emergent 
PCI were at 1.5 times higher risk of CV readmission, 1.54 
times the risk of having second CV readmission, and 1.66 
times the risk of third CV readmission (figure 2).

Non-fatal CV readmissions
We excluded 338 patients who died during the 3-year 
follow-up post-PCI. Of the 4380 patients, 1597 (36.5%) 
did not have a CV readmission during their follow-up. The 
distribution of the proportion of events for the different 
time-spaced admissions is  presented in figure  3. Table  2 
summarizes the HR estimates along with their 95% CIs of 
the covariates of the three different models for the different 
time-spaced readmissions. The adjusted HR showed that 
patients who underwent an emergency PCI had a consis-
tently elevated risk of recurrent events, regardless of the 
model and/or time-spaced consideration. The values of 
RB% of the point estimates were then calculated for the 
different covariates and time-spaced readmissions with CFM 
as the reference. For example, the RB% of CG (−6.59%, 
−2.2%,  2.3%) was closer to CFM compared with FG 
(17%, 8.2%, 4.2%) for ‘emergency procedure’ in unstruc-
tured, 30-day and 60-day spaced readmissions, respectively, 
suggesting event dependence in the data. For all of the 
time-spaced readmissions, we found that the values of %RB 
were closer to the conditional models, suggesting that event 
dependence dominated the data (figure 4). The cumulative 
hazards by event number based on the CFM are presented 
figure 5A–C, and the cumulative hazards can be seen to vary Ta
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by event number. With the spaced data (at least by 30 or 60 
days), it can be seen that the cumulative hazards increase in 
varying magnitude for those with prior events, supporting 
the presence of event dependence. Including heterogeneity 
and event dependence, the baseline hazards seem to vary by 
event numbers in this graph.

Discussion
Our study found emergent as compared with elective PCI 
patients were at higher risk for recurrent CV readmis-
sions in all three different models and time-spaced data 
sets, but magnitude of the  HR varied across the models. 
Furthermore, with both the time-spaced data sets (30-day 
and 60-day), the %RB of the CG model was closer to the 
CFM, implying the presence of strong event dependence 
in the data. To limit the issue of convergence (high number 
of strata with sparse events), we collapsed the event strata 
to 11.

The conditional model accounts for within-subject 
correlation and event dependence by stratifying the data by 
the events, while the frailty models capture the unobserved 
random effects. However, in clinical practice, it has been 
well recognized that there exists both heterogeneity and 
event dependence among the patients. Even certain patients 
with similar baseline characteristics as others may be more 

prone to adverse events compared with the others, intro-
ducing the possibility of hidden heterogeneity among indi-
viduals. This unaccounted variability between the subjects is 
introduced as a random effect in the frailty model. In addi-
tion, within-subject variations are complicated due to event 
dependence where the risk of a new event depends on the 
number of previous events. The CFM effectively accounts 
for both event dependence and heterogeneity simultane-
ously replicating the complex nature of the clinical data. 
Hence, we included CFM as the reference in our analysis 
to account for both event dependency and heterogeneity. It 
has been previously shown that use of CFMs produce unbi-
ased results when dealing with repeated events that exhibit 
both heterogeneity and event dependence.9 13–15 Further, 
it has been emphasized that competing risks of mortality 
confound the analysis of recurrent events.16 Among patients 
with heart failure, it has been observed that mortality 
thwarts readmissions leading to skewed result.17 Hence, 
we excluded those patients who died during the 3-year 
follow-up in our analysis in order to handle the issue of 
competing risk.

The traditional time-to-first event analysis results in a 
substantial loss of information and also does not measure 
the complete burden of the disease. The recurrent events 
must be accounted for in clinical trials to provide complete 

Figure 4  Relative bias of the models in reference to conditional frailty model (CFM). CV, cardiovascular.
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details on the progression of the disease, as well as the 
economic liability for the hospital and patients. It has been 
shown that accounting only for the first event ignored the 
additional 44% of heart failure hospitalizations and 42% 
of CV deaths in a randomized control trial.18 It has also 
been emphasized that there is a need to report the effect of 
a drug on the non-fatal events and that the findings should 
not be restricted to reporting only the fatal outcomes.19 
Clinical trials in CV research have realized the importance 
of including recurrent events and have accounted them 
for in their statistical analysis plan; however, the issue of 
independence of subsequent events has not previously 
been handled.20–22 Our results suggest that recurrent events 
cannot be considered independent no matter how long a 
period of time is inserted between the events. Thus the 
assumption of the Andersen-Gill model, which incorporates 
the Cox model into a counting process, is valid if the time 
between events is facilitated by time-varying covariates. 
The Prentice, Williamson, and Peterson conditional model 
stratifies the data by the event allowing for the baseline 
hazard to vary between events. This model can be fitted 
in gap time when the time index resets to zero after each 
recurrent event or in total time which calculates the effect 
of a covariate from the time of entry into the study. The 
marginal means/rates model assumes a baseline hazard for 
all events with no mention of a dependence structure or 

time-varying covariates and would be inappropriate if event 
dependence is of importance.2

Our study has all the limitations of retrospective studies 
of prospectively collected data. Importantly, we did not 
have time-varying covariates such as blood pressure, lipid 
values, and medications such as antiplatelet agents, which 
can vary in their intensity when a patient has progressively 
more events after PCI. Some of the patients included in the 
analysis had a prior PCI. We used %RB to ascertain the 
presence of dependence, while the magnitude of depen-
dence between events was not calculated. We recognize we 
may have lost patients to follow-up if they were hospital-
ized outside of the Dallas Forth Worth metro area. We were 
able to obtain a complete cohort of patients who underwent 
PCI at our center and their corresponding CV readmissions 
from the Dallas-Fort Worth Hospital Council Foundation, 
but had no ability to capture hospitalizations beyond our 
region. Being a retrospective study, some bias may have 
been induced due to uncaptured covariates in the registry, 
such as procedural details, intercurrent revascularization 
performed at a distant center, or new important illnesses 
such as malignancy.

Conclusion
Our analysis showed that irrespective of the period between 
events, prior events have an influence on future events when 

Figure 5  Estimated cumulative hazards for each event by conditional frailty model. CV, cardiovascular.
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we analyze expected risks of hospitalization after urgent 
versus elective PCI. Hence, event dependence should be 
considered when choosing models to analyze recurrent 
events after PCI.

Contributors  AV, PAM, LJ: substantial contributions to the conception or 
design of the work, or the acquisition, analysis or interpretation of data. AV, 
LJ, PAM, JWC, GAF, SRL,JMS, RCS, RCV, CEV: drafting the work or revising it 
critically for important intellectual content. AV, LJ, PAM, JWC, GAF, SRL,JMS, 
RCS, RCV, CEV: final approval of the version published. AV, PAM: agreement 
to be accountable for all aspects of the work in ensuring that questions 
related to the accuracy or integrity of any part of the work are appropriately 
investigated and resolved.

Funding  This study was funded by the Cardiovascular Research Review 
Committee.

Competing interests  RCS: Medtronic: Advisory Board, Global TAVR proctor; 
Boston Scientific: Advisory Board, Global TAVR proctor, Others: none to report. 
This study was funded by the Cardiovascular Research Review Committee. 

Patient consent  Not required.

Ethics approval  This study was approved by the Baylor Health Care System 
Institutional Review Board with a waiver of consent.

Provenance and peer review  Not commissioned; externally peer reviewed.

References
	 1	 National Cardiovascular Data Registry. Hospital 30-Day Risk-Standardized 

Readmission Rate Following Percutaneous Coronary Intervention Measure 
[Internet]. https://www.​ncdr.​com/​WebNCDR/​analytics/​pcir​eadm​issi​onme​asure.

	 2	 Amorim LD, Cai J. Modelling recurrent events: a tutorial for analysis in 
epidemiology. Int J Epidemiol 2015;44:324–33.

	 3	 Prentice RL, Williams BJ, Peterson AV. On the regression analysis of multivariate 
failure time data. Biometrika 1981;68:373–9.

	 4	 Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete 
failure time data by modeling marginal distributions. J Am Stat Assoc 
1989;84:1065–73.

	 5	 Clayton D. Some approaches to the analysis of recurrent event data. Stat 
Methods Med Res 1994;3:244–62.

	 6	 Lin DY. Cox regression analysis of multivariate failure time data. Stat.Med 
1994;13:2233–47.

	 7	 Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox 
Model. New York: Springer, 2000.

	 8	 Oakes DA. Frailty models for multiple event times. Dordrecht: Survival Analysis, 
State of the Art, Kluwer Academic Publishers, 1992.

	 9	 Box-Steffensmeier JM, De Boef S. Repeated events survival models: the 
conditional frailty model. Stat Med 2006;25:3518–33.

	10	 https://​dfwhcfoundation.​org/​data/
	11	 Hicks KA, Tcheng JE, Bozkurt B, et al. ACC/AHA Key data elements and 

definitions for cardiovascular endpoint events in clinical trials: A report of the 
american college of cardiology/american heart association task force on clinical 
data standards (Writing Committee to Develop Cardiovascular Endpoints Data 
Standards). J Nucl Cardiol 2014:22:1041–144.

	12	 https://​classic.​ntis.​gov/​products/​ssa-​dmf/#
	13	 Torá-Rocamora I, Gimeno D, Delclos G, et al. Heterogeneity and event 

dependence in the analysis of sickness absence. BMC Med Res Methodol 
2013;13:114.

	14	 Navarro A, Casanovas G, Alvarado S, et al. Analyzing recurrent events when 
the history of previous episodes is unknown or not taken into account: proceed 
with caution. Gac Sanit 2017;31:227–34.

	15	 Cui J, Forbes A, Kirby A, et al. Parametric conditional frailty models for recurrent 
cardiovascular events in the lipid study. Clin Trials 2008;5:565–74.

	16	 Anand IS, Win S, Rector TS, et al. Effect of fixed-dose combination of isosorbide 
dinitrate and hydralazine on all hospitalizations and on 30-day readmission 
rates in patients with heart failure: results from the African-American Heart 
Failure Trial. Circ Heart Fail 2014;7:759–65.

	17	 Claggett B, Tian L, Castagno D, et al. Treatment selections using risk-benefit 
profiles based on data from comparative randomized clinical trials with 
multiple endpoints. Biostatistics 2015;16:60–72.

	18	 Borer JS, Böhm M, Ford I, et al. Effect of ivabradine on recurrent hospitalization 
for worsening heart failure in patients with chronic systolic heart failure: the 
SHIFT Study. Eur Heart J 2012;33:2813–20.

	19	 Anker SD, McMurray JJ. Time to move on from ’time-to-first’: should all events 
be included in the analysis of clinical trials? Eur Heart J 2012;33:2764–5.

	20	 Zsebo K, Yaroshinsky A, Rudy JJ, et al. Long-term effects of AAV1/SERCA2a 
gene transfer in patients with severe heart failure: analysis of recurrent 
cardiovascular events and mortality. Circ Res 2014;114:101–8.

	21	 Tikkanen MJ, Szarek M, Fayyad R, et al. Total cardiovascular disease burden: 
comparing intensive with moderate statin therapy insights from the IDEAL 
(Incremental Decrease in End Points Through Aggressive Lipid Lowering) trial. J 
Am Coll Cardiol 2009:54:2353–7.

	22	 Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery 
haemodynamic monitoring in chronic heart failure: a randomised controlled 
trial. Lancet 2011;377:658–66.

 on A
pril 23, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2018-000873 on 18 January 2019. D
ow

nloaded from
 

https://www.ncdr.com/WebNCDR/analytics/pcireadmissionmeasure
http://dx.doi.org/10.1093/ije/dyu222
http://dx.doi.org/10.1093/biomet/68.2.373
http://dx.doi.org/10.1080/01621459.1989.10478873
http://dx.doi.org/10.1177/096228029400300304
http://dx.doi.org/10.1177/096228029400300304
http://dx.doi.org/10.1002/sim.2434
https://dfwhcfoundation.org/data/
https://classic.ntis.gov/products/ssa-dmf/#
http://dx.doi.org/10.1186/1471-2288-13-114
http://dx.doi.org/10.1016/j.gaceta.2016.09.004
http://dx.doi.org/10.1177/1740774508098464
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.114.001360
http://dx.doi.org/10.1093/biostatistics/kxu037
http://dx.doi.org/10.1093/eurheartj/ehs259
http://dx.doi.org/10.1093/eurheartj/ehs277
http://dx.doi.org/10.1161/CIRCRESAHA.113.302421
http://dx.doi.org/10.1016/j.jacc.2009.08.035
http://dx.doi.org/10.1016/j.jacc.2009.08.035
http://dx.doi.org/10.1016/S0140-6736(11)60101-3

	Event dependence in the analysis of cardiovascular readmissions postpercutaneous coronary intervention
	Abstract
	Introduction﻿﻿
	Methods
	Data sets based on spacing of events
	Statistical analysis
	Fatal and non-fatal events
	Non-fatal readmissions
	Relative bias

	Results
	Fatal and non-fatal events
	Non-fatal CV readmissions

	Discussion
	Conclusion
	References


