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ABSTRACT

Chimeric antigen receptor (CAR)-T-cell therapy

has sparked a wave of optimism in hematological
malignancies, reflected by the successful results of
early clinical trials involving patients with pre-B-cell
acute lymphoblastic leukemia, B-cell lymphomas and
multiple myeloma. CAR-T-cell therapy is considered
to be a novel immunotherapy treatment that has the
potential for curing certain hematological cancers.
However, as use of CAR-T-cell therapy has grown,
new challenges have surfaced. These challenges
include the process of manufacturing the CAR-T
cells, the mechanisms of resistance that underlie
disease relapse, adverse effects and cost. This review
describes the published results of clinical trials

and expected developments to overcome CAR-T
resistance.

INTRODUCTION

Hematological malignancies contribute to a
major burden of new cancer cases detected
each year, with close to 178 000 new cases of
lymphoma, leukemia and multiple myeloma
(MM) detected each year.! Encouragingly, over
the past three decades, improvements in cancer
survival rates have been most rapid for hema-
tological malignancies in comparison to other
malignancies. Treatment protocols are changing
particularly with the advent of targeted cellular
immunotherapies to manage hematological
malignancies. Here, we will review the utili-
zation of these targeted therapies, particu-
larly chimeric antigen receptor T-cell (CAR-T)
therapy, for the treatment of hematological
malignancies; the rationale behind target selec-
tion and the toxicities associated with CAR-T
therapy.

Like other forms of immunotherapy, the
mainstay of CAR-T therapy is the activation of
a T-cell response against a malignancy. CAR-Ts
are a form of genetically modified autolo-
gous immunotherapy. CARs are recombinant
proteins, each composed of an antibody-derived
extracellular single-chain variable fragment
(scFv) linked to the intracellular T-cell signaling
domains of the T-cell receptor.” This adoptive
transfer of engineered T cells that express CARs
can be used to target specific tumor-associated
antigens (TAAs) in an human leukocyte antigen
(HLA)-independent manner; thus, this therapy
could be used in patients of all HLA types.
CAR-T therapy has shown incredible success
and promise in treating relapsed/refractory
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leukemias and lymphomas in short periods of
time. This success has catapulted CAR-T therapy
into the spotlight and made it more accessible in
general clinical practice.

CAR-Ts were first developed in 1993 by
Esshar et al.> However, first-generation CARs
had limited efficacy in vivo due to their short
half-lives, limited expansion and poor anti-
tumor efficacies. Over the course of almost
a decade, second-generation CARs that used
co-stimulatory domains (eg, CD28, 4-1BB
(CD137) and OX40 (CD134)) were produced,
overcoming the shortcomings of first-
generation CARs with improved persistence
and antitumor effects.* Third-generation
CARs involved the incorporation of multiple
co-stimulatory domains.

B-cell malignancies have garnered significant
interest as a potential indication for therapy
with CARs due to the presence of CD19 and
CD20, which are B-cell-specific antigens that
have been deemed as ideal targets for CARs
to act on due to certain inherent properties
described in the ‘target selection’ section below.
Consequently, following multiple preclinical
and clinical trials, CD19-directed CAR-T (CAR-
T19) therapy (tisagenlecleucel-t) was Food and
Drug Administration (FDA) approved for treat-
ment of acute lymphoblastic leukemia in August
2017, followed by the approval of CAR-T19
therapy—axicabtagene ciloleucel (axi-cel)—
for the treatment of large B-cell lymphomas
in October 2017. Another antigen of interest
that has been extensively studied for the treat-
ment of MM is the B-cell maturation antigen
(BCMA), or CD269. This antigen is specifically
expressed on the surfaces of plasmablasts and
plasma cells but not on other classes of B cells,
hematopoietic cells or normal cells.’

To produce CAR-Ts for clinical use, T cells
are collected from the patient by leukapheresis,
activated, modified, expanded and then rein-
fused to the patient after inducing lymphode-
pletion using lymphodepleting chemotherapy.

The original T-cells are transduced with the
CAR via a viral vector. However, this is a costly
process that requires manufacturing of the
virus, with complicated quality control process,
and carries a risk of insertional oncogenesis.
Another method for modifying the T cells is
by using non-viral transposon transfection, also
known as ‘sleeping beauty’ methods.® It is a
simple, cut-and-paste process to translocate the
transgene/transposon (the CAR gene) into the T
cells (figure 1).
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Figure 1  Chimeric antigen receptor T-cell (CAR-T) manufacturing process. (1) Plasma cells in relapsed/refractory myeloma escape
immune surveillance by T cells. Patients undergo apheresis to select T cells. (2) The next step is to engineer T cells to recognize plasma
cells. This engineering process could be done with many available methods with a viral vector (lentivirus or gamma virus) or without a
viral vector (DNA transposon system or RNA transfection). (3) The selection of a conditioning regimen to deplete host T cells. Options
include using cyclophosphamide, using fludarabine, or not using any chemotherapy. T cells can now recognize plasma cells. (4) Apoptosis
induction and clinical response. Multiple factors may be involved in the variations in efficacy and toxicity between the different constructs
seen in clinical trials (marked with stars). These may include 1) factors having to do with patient selection; 2) target selection and degree

of tumor burden and/or target expression; 3) aspects intrinsic to the CAR construct, such as variations in single-chain variable fragment
(scFv) sequencing or co-stimulatory molecules or differences in transduction mechanisms and vectors and 4) potentially, differences in

conditioning regimens used for lymphodepletion.

As expected, CAR-T therapy comes with a unique set of
complications, the most common of these being cytokine
release syndrome (CRS), neurotoxicity and B-cell aplasia.
These complications will be discussed in detail below.

Target selection

One of the primary aspects of CAR-T therapy is the selec-
tion of an appropriate target for the CAR-T to act on. Target
selection involves the selection of a TAA, which is selec-
tively presented on the malignant cell in question. An ideal
target antigen would be one that remains stable and consis-
tently presented throughout the neoplastic process and is
only present on malignant cells and not on non-malignant
cells.

D19

CD19 meets most of the aforementioned requirements. It
is a B-cell-specific antigen that is expressed on both mature
and developing B cells, absent on hematopoietic stem cells
and consistently present throughout the course of the malig-
nant B-cell differentiation. As a result, CD19 garnered a
tremendous amount of interest as a CAR-T target for B-cell
neoplasms. CD19 CAR-T therapy for B-cell neoplasms has
truly heralded the breakthrough of cellular therapeutics.

CD19 is absent on plasma cells, however, targeting
plasma cells precursors with CD19 CAR-T showed clinical
benefits in early phase trials.”

B-cell maturation antigen

BCMA is a CAR-T-cell target that has been explored in
MM. Functionally, it helps regulate B-cell maturation, is
increasingly present throughout the plasma cell differen-
tiation process and correlates with prolonged plasma-cell
continued survival in mouse models.® However, despite its
role in B-cell maturation, humoral response and germinal
center formation were unimpaired in BCMA (—/—) mice,
suggesting that BCMA inhibition may allow for the selective
targeting of plasma cells without compromising memory B
cells and humoral immunity mechanisms.’

BCMA carries particular promise as a CAR-T target
because it is expressed on plasma cells with limited expres-
sion elsewhere and is notably absent on major organs,
hematopoietic stem cells and normal T cells.” '*'! Increasing
expression of BCMA was detected along the spectrum
from normal plasma cells to monoclonal gammopathy of
undetermined significance to smoldering MM to MM.'
Furthermore, plasmacytoid dendritic cells (pDCs) have
been shown to play a role in MM progression and plasma
cells resistance.”> BCMA is also notably expressed in pDCs
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in MM, suggesting an additive benefit of BCMA targeting.'*
In total, higher serum BCMA levels were correlated with
disease progression and inversely correlated with overall
survival, and recent studies trialing anti-BCMA CAR-T
therapy have shown promising results.' '¢

Other targets

Several ongoing trials directing CAR-T toward other targets
in myeloma might be considered as treatment options;
some of those targets have proved promising in early phase
clinical trials, and others are still in preclinical phase.

CD38 was considered as a target because of its high
expression on plasma cells. However, CD38 is also
expressed on normal hematopoietic cells, such as red blood
cells, natural killer (NK) cells and other tissues, increasing
the likelihood of ‘on-target, off-tumor’ toxicity.'” '* A study
to evaluate the safety and efficacy of anti-CD38 CAR-T
in relapsed/refractory MM (RRMM) patients is ongoing
(NCT03464916).

CD138 is another target that is highly expressed on
plasma cells. However, it is also expressed on normal tissues,
such as epithelial cells, potentially increasing ‘on-target, off-
tumor’ toxicity. CD138 is highly expressed on MM cells and
is involved in their development and proliferation.” In a
clinical report on five patients treated with CD138-directed
CAR-T, no excess off-target effects were observed.”® A
phase I clinical trial with CD138-directed CAR-T is ongoing
(NCT03672318). CAR-Ts against K light chains have been
developed and tested in a clinical trial with no myeloma
response.’!

Other targets that have shown encouraging preclinical
activity and are currently undergoing clinical trials include:
1) signaling lymphocyte activation molecule F7, which is
widely expressed on plasma cells as well as subsets of normal
B and T cells, NK cells, monocytes and dendritic cells and
is already a therapeutic target of the monoclonal antibody
elotuzumab®?; 2) GPRCSD, which is expressed on plasma
cells as well as some normal cells, such as hair follicle and
lung tissue cells (expression is variable, and the expression
on plasma cells is 500-1000 times that found on normal
cells)** and 3) NKG2D receptor, which activates NK cells
and T-cell subsets after binding to a group of ligands that
is expressed on infected cells and a variety of tumor cells,
including MM. Importantly, the expression of NKG2D has
not been observed on normal, healthy tissues.* %

On-target, off-tumor effects

Cytokine release syndrome

CRS is a potential complication of CAR-T therapy, charac-
terized by a clinical spectrum ranging from low-grade fever
and constitutional symptoms to potentially life-threatening
hemodynamic instability, hypoxia and renal failure. CRS
differs in part from autoimmune toxicity, in which anti-
genic sites are incidentally expressed and targeted on host
tissue, colloquially referred to as ‘on-target, off-tumor’
effects.”® Rather, CRS, while incompletely understood, is
theorized to present as a function of initial on-target acti-
vation with subsequent widespread cytokine release in the
setting of extensive bystander lymphocyte, macrophage and
neutrophil activation.?® * Furthermore, markers of endo-
thelial activation such as von Willebrand factor, Ang-2 and

other Weibel-Palade body products are notably elevated in
severe CRS, physiologically accounting for the capillary
leak, hypotension and coagulopathy often observed in these
patients.”® Clinically, CRS is frequently graded according to
severity with treatment recommendations varying by grade.
According to the American Society for Transplantation and
Cellular Therapy, grading is delineated by post-CAR-T fever
(grade 1) plus low-flow oxygen (grade 2), with progression
to need for either one vasopressor or high-flow oxygen
(grade 3) versus multiple vasopressors and/or positive pres-
sure or mechanical ventilation (grade 4)*’ (table 1).

On average, most patients developed an initial fever
1-4days following CAR-T transfusion,” *° with obser-
vations of more severe CRS occurring, on average, 1day
post-transfusion and with less severe iterations occurring,
on average, 4 days post-transfusion.’’ However, the onset
of fever depends on the construct of CAR-T. For example,
the onset of fever occurs between 6 and 9 days after infusing
LCAR-B38M CAR-T,** which is BCMA directed CAR-T
cells. In addition to the CAR-T dose, the co-stimulatory
signal of the CAR-T, for example, CD28 >4-1BB, may
lead to increased CAR-T-cell expansion in vivo and higher
toxicity, as seen in the ZUMA-1 trial.

Some factors, such as disease burden at the time of infu-
sion and CTL019, have been shown to predict predispo-
sition to and severity of CRS.>' ** CRS severity has also
been retrospectively associated with elevated serum inter-
feron-y, tumor necrosis factor levels, granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage
colony-stimulating factor (GM-CSF), granzyme B and inter-
leukin (IL)-1B.%*3*

Non-specific markers of inflammation, such as ferritin
and C reactive protein (CRP), were elevated in CRS and
exhibited limited positive predictive value in terms of
predicting disease onset?”; CRP may also have trend-based
clinical utility in identifying the peak of the inflammatory
cascade.”® Low fibrinogen levels were widely observed in
all grades of CRS, whereas more significant transaminitis,
renal injury and coagulopathy were observed in more severe
grades of the syndrome.”

Clinicians must have a high index of suspicion of CRS in
the post-transfusion setting so that treatment can be initi-
ated promptly. IL-6 has been implicated as a central driver
in CRS, and IL-6 blockade with tocilizumab has been shown
to ameliorate CRS symptomatology without significant inhi-
bition of CAR-T expansion.®' Tocilizumab recently gained
FDA approval for treatment of CRS as well.** Steroids have
also significantly dampened observed toxicities associated
with CRS,*® %° %¢ and patients who received methylpred-
nisolone in the midst of CRS still demonstrated antitumor
response to CAR-T therapy.®” Initial results assessing the
use of prophylactic tocilizumab have indicated a reduc-
tion in the incidence of severe CRS in patients receiving
tocilizumab on day 2, post-transfusion; however, additional
studies regarding prophylactic use and more definitive CRS
treatment regimens are still ongoing.*®

Neurotoxicity

Neurotoxicity is a well-known complication of CAR-T
therapy. Previously known as CAR-T cell-related enceph-
alopathy syndrome, it is currently referred to as immune
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Table 1  Grading and management of CRS/neurotoxicity from CAR-T therapy
Cytokine release syndrome (CRS)
Grade Symptoms Management
1 Fever only Onset <72 hours: consider tocilizumab 8 mg/kg+dexamethasone
10mg every 24 hours
Onset =72 hours: supportive care
2 Fever with hypotension (not on vasopressors) and hypoxia (requires  Onset <72 hours: consider tocilizumab 8 mg/kg AND dexamethasone
only nasal canula) 10mg every 24 hours
Onset =72 hours: consider tocilizumab 8 mg/kg+dexamethasone
10mg every 24 hours
3 Fever with hypotension (requires a vasopressor) and hypoxia Consider tocilizumab 8 mg/kg AND dexamethasone 10 mg every 12
(requires high flow nasal canula ">6 L/min’ or non-rebreather mask) hours to every 24 hours
or grade 4 transaminitis
4 Fever with hypotension (requires multiple vasopressors) and hypoxia Consider tocilizumab 8 mg/kg AND dexamethasone 20 mg every 6
(requires positive pressure like CPAP, BiPAP or intubation) hours
Immune effector cell-associated neurotoxicity syndrome*
Grade Symptoms Management
1 7-9 points Seizure prophylaxis; dexamethasone 10 mg every 8-12 hours
2 3-6 points Seizure prophylaxis; dexamethasone 10 mg every 8-12 hours
3 0-2 points; any clinical seizure Seizure prophylaxis; dexamethasone 10 mg every 6-8 hours
4 Unarousable; life-threatening Seizure prophylaxis; dexamethasone 20 mg every 6 hours

Adopted from the ASBMT Consensus. Multiple other grading systems are available like the CTCAE 5.0,% Penn criteria,® * MSKCC criteria®' and CARTOX criteria.”?
*Encephalopathy is graded by CARTOX-10 criteria: orientation: year, month, city, hospital, president (5 points). Ability to name three objects (3 points). Ability to
write a standard sentence (1 point). Attention: ability to count down from 100 by intervals of 10 (1 point).

BiPAP, bilevel positive airway pressure; CAR-T, chimeric antigen receptor T-cell; CPAP, continuous positive airway pressure.

effector cell-associated neurotoxicity syndrome (ICANS).
The pathogenesis of ICANS is not completely clear.
However, multiple hypotheses have been put forward based
on preclinical and clinical studies. Increased blood-brain
barrier permeability is thought to be a cause of ICANS,
as evidenced by elevations in CSF proteins.’® This may
be secondary to excessive cytokine release in the cerebral
circulation, as evidenced by the presence of high levels of
cytokines in the CSF during neurotoxicity. It is interesting
to note that ICANS, very much like CRS, has been seen to
develop in patients with higher numbers of CAR-Ts due to
the greater expansion of these cells.*

The prevalence of ICANS has varied from study to
study, with a prevalence rate of 23%-67% for patients
with lymphoma and 40%-62% for those with leukemia.
ICANS can present with a wide spectrum of neurological
signs and symptoms, ranging from headache and confusion
to seizures and myoclonus with rare cases of progression
to diffuse cerebral edema and even obtundation requiring
intubation.

Gust et al studied neurological toxicities in 133 adults
with refractory B-cell acute lymphoblastic leukemia
(B-ALL), non-Hodgkin’s lymphomas (NHL) or chronic
lymphocytic leukemia (CLL) who received lymphodeple-
tion chemotherapy followed by infusion of CD19 CAR-T.
The multivariable analysis showed that pre-existing neuro-
logical comorbidities, cyclophosphamide and fludarabine
lymphodepletion, higher infused CAR-T cell dose and
higher burden of malignant CD19+ B cells in marrow were
associated with an increased risk of neurotoxicity.*

Several markers have been proposed to correlate CAR-T
therapy with ICANS, such as elevated levels of ferritin,
GM-CSF and a cytokine called monocyte chemoattractant
protein-1.%

The treatment of ICANS includes a high dose of corti-
costeroids. However, some researchers have proposed that
corticosteroid use may negatively affect the persistence of
CAR-Ts and have proposed other modalities of manage-
ment, such as GM-CSF neutralization, which have yet to
be studied adequately.*’ Tocilizumab, which is used for

severe CRS, has not been shown to be effective in treating
ICANS.*

Other complications

Another, on target, well-described side effect with CD19
CAR-T cells is B-cell aplasia, which makes patients more
susceptible to viral infections, as shown below in the
‘CAR-T for lymhoma and acute lymphoblastic leukemia/
lymphoma’ section.

Resistance mechanisms

Understanding the mechanisms of resistance to CAR-T
therapy will assist in optimizing the potential of this novel
treatment to improve patient outcomes. The mechanisms of
resistance to CAR-T therapy can be summarized as follows:
a) CAR-T factors, b) the tumor microenvironment and ¢)
tumor factors.*?

Expansion, persistence and tumor cytotoxicity are the
three main characteristics of CAR-Ts that influence treat-
ment efficacy. T cells from patients with cancer are often
deficient in terms of intrinsic cytotoxicity.* T-cell exhaus-
tion refers to a state of dysfunction characterized by a
decrease in effectors and increased expression of inhibitory
receptors, usually induced by chronic stimulation, as it is
in cancer.” *® The activation of IL-6/signal transducer and
activator of transcription-3 signaling pathways promotes
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central memory T-cell differentiation, which may play an
important role in regulating the proliferation of CAR-Ts.*

Studies on the role of the tumor microenvironment in
CAR-T therapy are rare. Some studies have shown that
specific components of the inflammatory tumor environ-
ment, such as prostaglandin E2 produced by tumor cells
in a mouse model, can affect the antitumor activity of T
cells depending on IL-6, chemokine (C-X-C motif) ligand
1 (CXCL1) and G-CSE* Cancer-associated fibroblasts,
myeloid-derived suppressor cells and M2 subtypes of
tumor-associated macrophages in the tumor microenviron-
ment have been reported to restrict infiltration of cytotoxic
T lymphocytes (CTLs).*

Antigen escape can occur as a potential mechanism of
relapse post-CAR-T therapy. Tumor cells downregulate the
targeted antigen expression or express a different epitope
that is not targeted by the CAR-Ts. This has been observed
in CD19-directed CAR-T therapy as well as myeloma.*’ >
Antigen escape after CD19-CAR-T is reported in about 17%
of cases.’’ CD19-negative relapsed B-ALL can be due to
lineage switching (conversions of leukemic cell lineage) or
genetic event like SRSF3-involved alternative messenger
RNA splicing of exon 2 of CD19, or other mutations in
exons 2—6, which resulted in the loss of the targeted epitope
in the membrane and led to immune-escape phenomena.’***

Tumors can exhibit trogocytosis, which refers to
decreased antigen expression on target tumor cells and, in
fact, transfer of the antigen to T cells, which mediates CAR-
T-induced fratricide of T cells.”> A strategy of dual CAR-T
(two different CAR-T products) or bispecific CAR-T can be
used to overcome this form of resistance.’® >’

CAR-T for acute lymphoblastic leukemia/lymphoma
ALL accounts for less than half of 1% of all cancers in
the USA. In 2020, it is expected to have about 6150 new
Five-year overall survival for pediatric ALL is
about 80%-90%. However, the prognosis is much worse
for relapsed disease, with 5-year survival rates of only
30%-50% after the first relapse, and <20% after subse-
quent relapses.*®

CD19-targeted CAR-T therapy has shown incredible
promise for the treatment of B-cell ALL. In 2013, Grupp
et al first reported two cases of children with relapsed/
refractory pre-B-cell ALL who were treated with CD19-
targeted CAR-T (CTLO019), later to be called tisagenlec-
leucel, with complete remission observed in both patients.*”
Subsequently, in a pilot study published in 2018 by the
same group, the ELIANA trial showed positive responses
to CD19-targeted CAR-T (CTLO19), with 82% overall
response and a median overall survival of 19 months.®
About 88% of patients had a grade 3 or 4 adverse event.
Out of 75 patients, 58 (77%) had CRS with median time

CS.Sf}S.1

to onset of 3 days. Intensive care unit admissions were
reported in 47% of cases for management of CRS. About
899% of patients reported adverse events of special interest,
which included CRS, cytopenia that did not resolve by
day 28, infections, neurological events and the tumor lysis
syndrome. Neurological events occurred in 40% of patients
within 8 weeks after infusion. No grade 4 events or cerebral
edema were reported.®’

FDA approval was granted to tisagenlecleucel (a CD19-

targeted CAR-T) in August 2017 for the treatment of

relapsed/refractory B-cell ALL in patients up to 25 years
of age.®!

A phase I dose escalation trial in a National Cancer Insti-
tute study reported safety results on 19 dosed patients.®
CRS, fever and hypokalemia were the most common non-
hematological grade 3 side effects.®*

Target identification for T-cell ALL has posed challenges
in that leukemic cells exhibit the same antigens as normal
T cells and in that T-cell aplasia is not a complication that
may be tolerated, in contrast to the B-cell aplasia seen with
B-ALL treatment, which can be treated.’! CAR-T therapy
for ALL is associated with a side-effect profile similar to that
associated with other uses of this therapy. CRS is observed
in nearly all patients that are treated with CD19 CAR-T but
typically responds to tocilizumab (table 2).

CAR-T for lymphoma

Aggressive B-cell NHL, including diffuse large B-cell
lymphoma (DLBCL), are potentially curable in 50%-60%
of patients with first-line combination chemoimmuno-
therapy.®® Approximately 40%-60% of patients with
relapsed or refractory DLBCL respond to second-line
chemotherapy; 50% of these patients proceed to undergo
autologous hematopoietic stem-cell transplantation, and
of these, approximately 30%-40% remain progression-
free 3years after transplantation.®*™*® A retrospective study
reviewed the outcomes of 636 patients with primary refrac-
tory DLBCL or a relapse of DLBCL <12 months after
autologous transplantation. The rate of response to the next
line of therapy was 26%, with a complete response (CR)
rate of 7%j; the median overall survival duration was 6.2
months.®” These poor outcomes reinforce the need for new
therapeutic options for patients with relapsed or refractory
DLBCL.

Tisagenlecleucel is an anti-CD19 CAR-T agent with a
4-1BB co-stimulatory domain. High response rates, to
CD19-based CAR-T therapy, have been observed among
adult patients with relapsed or refractory DLBCL. The
JULIET trial enrolled 93 patients, in the efficacy analysis
set, with relapsed/refractory DLBCL, overall response
rate was 52% and 40% of patients showed CR and 12%
showed partial response (PR). The rates of ORR and CR

Table 2 Summary of pivotal clinical trials using CAR-T therapy for all

Results of CAR-T trials for ALL

Study Enrolled Infused Population CR % EFS 0s

ELIANA trial; tisagenlecleucel®® 92 75 Children and adults 81 @1 year 50% @1 year 76%
MSK; 19-28z CAR-T*' 83 53 Adults 83 6.1 months 12.9 months
NCI% 21 19 Phase I, MTX was 1x10° cells

ALL, acute lymphoblastic leukemia; CAR-T, chimeric antigen receptor T-cell; CR, complete response; EFS, event free survival; MTX, methotrexate; OS, overall survival.
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were 38% and 32%, respectively, at month 3 and 33%
and 29%, respectively, at month 6. The JULIET trial used
two different lymphodepleting regimens (fludarabine 25/
m?*x 3 days cyclophosphamide 250 mg/m*x 3 days or benda-
mustine 90 mg/m*X 2 days), for white cell count was >1000
cells per cubic millimeter within 1week before tisagenle-
cleucel infusion. Response rates did not differ substan-
tially according to the type of lymphodepleting therapy
received.”” Durable responses were observed for up to
18.4 months after infusion. The median progression-free
survival duration has not been reached for patients who
showed CR. The estimated rate of progression-free survival
at 12 months was 83% among patients who showed CR
or PR at 3 months. The median overall survival duration
among patients who received infusions was 12 months.
The most common adverse events of any grade were CRS
(58%), anemia (48%), fever (35%), decreased neutrophil
count (34%), decreased platelet count (33%), decreased
white cell count (33%), diarrhea (32%), infections (20%),
neurological events (12%) and febrile neutropenia (15%).”°

Axicabtagene ciloleucel (axi-cel) is an anti-CD19 CAR-T
agent with a CD28 co-stimulatory domain. The ZUMA-1
trial was a landmark study that eventually led to the FDA
approval of CAR-T therapy for the treatment of large
B-cell lymphomas.”! In a ZUMA-1 trial with 111 enrolled
patients, axi-cel was successfully administered to 101 of
these patients (91%).”' The ORR was 82%, and the CR rate
was 54%. With a median follow-up time of 15.4 months,
42% of the patients continued to show response and 40%
continued to show CR. The overall rate of survival at 18
months was 52%. The most common grade 3 or higher
adverse events that occurred during treatment were neutro-
penia (78%), anemia (43%) and thrombocytopenia (38%).
Grade 3 or higher CRS and neurological events occurred
in 139% and 28% of the patients, respectively. Three of the
patients died during treatment.”

Both, axicabtagene ciloleucel and tisagenlecleucel,
gained FDA approval for treatment of relapsed/refractory
DLBCL.”>”* It is important to note the difference between
the two CAR-T product and clinical trials design. axicabta-
gene ciloleucel used a CD28 co-stimulatory signal with
retrovirus-based vector delivery, whereas, tisagenlecleucel
used 4-1BB co-stimulatory signal with lentivirus-based
vector delivery.

Lisocabtagene maraleucel (liso-cel; JCARO17) is another
CD19-directed 4-1BB CAR-T product. The TRAN-
SCEND-NHL-001 Study included two cohorts, the FULL
dataset includes all patients in the DLBCL cohort (ie,
excludes MCL) and the CORE dataset includes de novo
DLBCL or transformed from follicular lymphoma without
prior allogenic transplant.”* CRS was seen in 35% of
patients, and a single patient (1%) developed grade 3—4
CRS. Neurotoxicity developed in 19% of patients, and 12%
of patients developed grade 3—4 neurotoxicity. The median
onsets of CRS and neurotoxicity were 5 and 10 days,
respectively. Nineteen patients (21%) received tocilizumab
and/or dexamethasone. Ninety-one patients were treated
and evaluable for safety and 88 were treated and evaluable
for efficacy. The best ORRs in the FULL and CORE popu-
lations were 74% (65/88) and 80% (52/65), respectively;
the best CRs were 52% (46/88) in the FULL population
and 55% (36/65) in the CORE population. A higher rate of

Table 3 Summary of CAR-T results for DLBCL

TRANSCEND:
ZUMA-1: axicabtagene JULIET: lisocabtagene
ciloleucel”** ti lecleucel” leucel™
Co-stimulatory d
vector CD28/Retroviral 41BB/Lentiviral 41BB/Lentiviral
Best ORR 82% 53% 80%
Best CR 58% 40% 59%
6 months ORR 4% 37% 47%
6 months CR 36% 30% 4%
CRS all grades 94% 58% 37%
CRS grade 3/4 13% 23% 1%
Neurotoxicity all grade 87% 21% 23%
Neurotoxicity grade 3/4  28% 12% 13%
Outpatient treatment No Yes (26%) Yes

CAR-T, chimeric antigen receptor T-cell; CR, complete response; CRS, cytokine release syndrome; DLBCL, diffuse large B-cell
lymphoma; ORR, objective response rate.

durable response with double dose of 1x10° cells CAR-T
was observed in the CORE population, with a 6-month
ORR and CR of 50% and 50% (7/14), respectively, vs 40%
(8/20) and 30% (6/20) at dose level 5x10” cells (table 3).%*

CAR-T for chronic lymphocytic leukemia

Treatment of CLL has dramatically improved over the years
due to the development of effective chemoimmunotherapy
(CIT) regimens.”* Monoclonal antibodies (rituximab, ofatu-
mumab and obinutuzumab) and targeted therapies (ibru-
tinib, acalabrutinib, venetoclax and idelalisb) play major
roles in the treatment of patients with CLL.”*"%2

Despite improvements in care, CLL is incurable and
patients usually relapse after initial treatment. Experience
in the use of CAR-Ts to treat CLL is limited, but safety and
efficacy data are encouraging, suggesting that it may be
possible to use CAR-Ts in populations of patients with CLL
with particularly unfavorable prognoses. Liso-cel was used
in an open-label phase I/Il study of patients with relapsed/
refractory CLL.*> All patients received ibrutinib prior to
the study; 56.5% had progressed on ibrutinib and received
therapy with venetoclax, and 91% were refractory to or
had relapsed on ibrutinib. Liso-cel was successfully manu-
factured in 96% of patients. Twenty-two were evaluable for
efficacy, with an ORR 82% and a CR rate of 45.5%, a PR
rate of 36% and stable disease reported in 14%. The most
common grade 3 or higher adverse events were throm-
bocytopenia (70%), anemia (96%), neutropenia (56.5%)
and leukopenia (43.5%). Two patients (8.6%) had grade 3
CRS and five (21.7%) had grade 3 or higher neurological
events.”

A randomized phase II study of two CTL019 (CD19-
targeting CAR) doses in R/R CLL. Twenty-eight patients
treated at stage I were randomized to receive high doses or
low doses; 11 patients received high doses with an ORR of
54.5% and a CR rate of 36.3%, and 13 patients received
low doses with an ORR of 30.7% and a CR rate of 7.6%."*
Both doses showed similar toxicity, so the higher dose was
chosen for stage II. Twenty-one patients were treated with
higher doses and 17 were evaluable for response (11 from
stage I and 6 from stage II). The ORR was 53%, with 35%
having achieved CR and 17.6% having achieved PR. All
35 patients were evaluable for toxicity and 19 had delayed
CRS. Seven patients (20%) had grade 3 or higher CRS. The
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dose of CAR-T was not associated with CRS development
or severity.**

CAR-T for multiple myeloma

Early efforts to use CAR-T therapy for MM have demon-
strated promising results. The aggregate of published
CAR-T therapeutic trials targeting BCMA noted an objec-
tive response in an average of 75.9% of patients with
a median duration of progression-free survival of 8.29
months.'® As anti-BCMA trials were conducted and relapses
were observed, multiple different markers were subse-
quently explored as potential targets as well. Several addi-
tional theoretical targets have recently been investigated,
including CD138, CD19, NK cell ligands and kappa light
chains; cohorts were small, but treatment efficacy ranged
from no response to as high as 80% PR or very good partial
response with multiple complete remissions observed.®
Further investigative works targeting a litany of other CD
receptors, G-protein signaling mechanisms, NK cell recep-
tors and carbohydrate antigens are in process as well.® A
number of these trials should conclude phase II testing by
the year’s end, and several more are slated to begin phase III
testing over the course of 2019 as well.*

Despite recent advancements and excitement surrounding
potential new targets under investigation, barriers to long-
term durable responses still exist. Antigen loss, or the
downregulation or loss of the target antigen on tumor
cells, remains a principle obstacle to the longevity of CAR-
T-mediated responses.”” The process of BCMA antigen
transfer from the tumor cell to the CAR-T itself with subse-
quent recognition and destruction of fellow CAR-Ts has
also been described.” Furthermore, suboptimal CAR-T
persistence and continued long-term efficacy remain addi-
tional barriers to durable remission as well.*

Lastly, with the increasing effort and investment in
CAR-T therapy for myeloma comes augmented costs as well
as swelling patient bases. The European Myeloma Network
has indicated a need for a more robust registry of patients
undergoing CAR-T therapy as well as a need for expert-
level consensus on appropriately managing escalating costs
(table 4).%¢

Table 4 Summary of pivotal CAR-T trials for relapsed/refractory
multiple myeloma with expected approval in the next few months

Summary of pivotal CAR-T trials for myeloma

Trial KarMMa-1' CARTITUDE-1%*
Product BB2121 LCAR-B38M

ORR 85% 91%

CR or better 45% 6 out of 21 patients
MRD negativity 15 patients were MRD- 10 patients were MRD-

negative at the 107 negative at the 10~
sensitivity level sensitivity level

CRS 26% 88%
PFS 11.8 months NA

*Multiple other ongoing clinical trials in early/newly diagnosed myeloma are
likely to be reported soon.

CAR-T, chimeric antigen receptor T-cell; CR, complete response; CRS, cytokine
release syndrome; MRD, minimal residual disease; NA, not available; ORR,
overall response rate; PFS, progression-free survival.

CONCLUSION

The outstanding outcomes of immunotherapy have sparked
major interest in the treatment of DLBCL, ALL, CLL and
MM. CAR-T therapy is an innovative approach to over-
coming conventional drug resistance and has demonstrated
the ability to selectively extirpate malignant cells. CAR-Ts
are genetically modified cells, lymphocytes or NK cells
that specifically target selective antigens. Currently, CAR-T
therapy is approved for the management of relapsed/refrac-
tory DLBCL and ALL, and it is likely to gain approval for
relapsed refractory MM and CLL.

CRS, ICANs and prolonged immune suppression are all
unique adverse events that can occur after CAR-T therapy
and require a special attention for early detection and
management. Finally, understanding the mechanisms of
resistance to CAR-T therapy is the first step to cultivating
better CAR-T constructs.
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