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ABSTRACT
Mitochondria, as the powerhouse organelle of cells, 
are greatly involved in regulating cell signaling 
pathways, including those related to the innate and 
acquired immune systems, cellular differentiation, 
growth, death, apoptosis, and autophagy as well 
as hypoxic stress responses in various diseases. 
Asthma is a chronic complicated airway disease 
characterized by airway hyperresponsiveness, 
eosinophilic inflammation, mucus hypersecretion, 
and remodeling of airway. The asthma mortality 
and morbidity rates have increased worldwide, 
so understanding the molecular mechanisms 
underlying asthma progression is necessary for 
new anti-asthma drug development. The lung is an 
oxygen-rich organ, and mitochondria, by sensing 
and processing O2, contribute to the generation of 
ROS and activation of pro-inflammatory signaling 
pathways. Asthma pathophysiology has been tightly 
associated with mitochondrial dysfunction leading 
to reduced ATP synthase activity, increased oxidative 
stress, apoptosis induction, and abnormal calcium 
homeostasis. Defects of the mitochondrial play an 
essential role in the pro-remodeling mechanisms 
of lung fibrosis and airway cells’ apoptosis. 
Identification of mitochondrial therapeutic targets 
can help repair mitochondrial biogenesis and 
dysfunction and reverse related pathological changes 
and lung structural remodeling in asthma. Therefore, 
we here overviewed the relationship between 
mitochondrial signaling pathways and asthma 
pathogenic mechanisms.

INTRODUCTION
Mitochondria, as crucial organelles and the 
“powerhouse” of the cell, have a key role in 
biosynthetic reactions and ATP synthesis, as well 
as other cellular processes, including synthesis of 
fatty acid, Ca2+ homeostasis, and hemoprotein 
biogenesis. Mitochondria are largely involved in 
the cell signaling circuitry, and recent evidences 
demonstrated that mitochondria participate in 
the regulation of numerous cellular signaling 
pathways by providing a physical platform 
for protein–protein interactions and the traf-
ficking of intracellular signaling molecules and 
adjusting Ca2+ hemostasis and ROS production. 
Mitochondria also regulate the signaling path-
ways involved in cell death, autophagy, innate 
and acquired immunity activation, production 

of growth factors, cellular differentiation, 
and hypoxic stress responses. On the other 
hand, dysregulated apoptosis, the main form 
of programmed cell death, contributes to the 
pathogenesis of various diseases.1

Mitochondria play a key role in modulating 
innate immune system responses (via regulating 
RNS generation) and cell death (by releasing 
apoptotic factors).2 3 Mitochondrial signaling 
routes are involved in the release of various 
metabolites and the balance of mitochondrial 
dynamics via interactions with other organ-
elles such as the endoplasmic reticulum. Mito-
chondrial dysfunction induces stress responses 
that can affect other organelles and disrupt 
cellular functions. In fact, any dysregulation in 
mitochondria-dependent signaling pathways 
would have physiological and pathophysiolog-
ical outcomes.4

Asthma is a chronic airway disease char-
acterized by airways’ eosinophilic inflam-
mation, airway hyperresponsiveness (AHR), 
mucus hypersecretion, goblet cell metaplasia, 
airway remodeling, increased IgE levels, and 
also reversible expiratory airflow obstruc-
tion.5 Many environmental stimuli and genetic 
contributors are known to facilitate asthma 
development. Asthma, as a prevalent disease, 
imposes a heavy economic burden on society, 
patients, and their families. The morbidity 
and mortality rates of asthma have increased 
worldwide over the past recent decades. While 
the currently available anti-asthma drugs 
effectively control asthma clinical symptoms, 
they cannot prevent the natural course of the 
disease.6 Therefore, it is necessary to scrutinize 
the molecular mechanisms involved in asthma 
progression to develop new and curative anti-
asthma drugs.

Allergic asthma is mediated by Th2 domi-
nant immune responses. Allergen exposure 
induces the release of pro-inflammatory cyto-
kines (IL-4, 5, and 13) and mediators (PGs, LT, 
and histamine), leading to inflammatory cells’ 
recruitment and activation, such as eosinophils. 
Among other immune cells, eosinophilic inflam-
mation is dominant and a common feature in 
asthma. Eosinophils release many reactive free 
radicals and compounds such as superoxide 
anion, hydrogen peroxide, hydroxyl radicals, 
peroxynitrite, NO, and so on, mediated by 
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oxidative pathways’ enzymes, such as myeloperoxidase and 
eosinophil peroxidase. These mediators create an oxidative 
microenvironment in airways, causing damage and injury 
to airway cells. In addition, the number of mitochondria 
has been observed to increase in the airway epithelium 
of asthmatic children.7 Oxidative free radicals have been 
noted to contribute to asthma pathogenesis. In mitochon-
dria, COXETC, as a key oxidative enzyme, catalyzes elec-
tron transfer for ATP generation via the coupled process of 
oxidative phosphorylation and, for this purpose, consumes 
large amounts of the oxygen content of cells.8 The inhi-
bition of COXETC causes oxidative stress and triggers 
mitochondria-mediated apoptosis.9

The lung is an oxygen-rich environment, and the physi-
ological activity of this organ depends on oxygen concen-
tration.10 A fall of O2 level in the lung leads to HPV 
secondary to PASMC intracellular Ca2+ due to Ca2+ release 
from ryanodine-sensitive stores and voltage-independent/
dependent Ca2+ entry, coupled with Rho kinase-mediated 
enhanced Ca2+ sensitivity of the contractile apparatus.11 So, 
PASMC mitochondria act as O2 sensors in HPV. Changes in 
O2 concentration affect ROS production in mitochondria 
and subsequently Ca2+ and K+ depolarization pathways. So, 
mitochondria can contribute to lung pathologic injuries by 
generating ROS and participating in the activation of pro-
inflammatory signaling pathways.5

Mitochondria consist of two membranes (the inner and 
outer), IMS, and mitochondrial matrix. This organelle 
works with a self-functioning security mechanism, namely. 
MQC. Mitochondria and the ER have connections with 
lipid raft-like domains called MAMs, which contain many 
proteins, which have important roles in Ca2+ transfer from 
the ER to mitochondria and lipid synthesis. Also, MAMs 
transfer stress signals from the ER to mitochondria and 
regulate MQC under ER stress.12

There is considerable overlap between the pathophysi-
ology of asthma and mitochondrial dysfunction in terms 
of calcium homeostasis, oxidative stress, and apoptosis. 
In addition, maternal inheritance is considered the stron-
gest risk factor of asthma.13 14 Mitochondrial haplogroups 
have been associated with increased serum IgE levels, and 
mutations in the mitochondrial genome sequences encoding 
mitochondrial tRNAs have shown a link with asthma.14 15 
In addition, the gene encoding ATP synthase mitochondrial 
F1 complex assembly factor 1 has been noted to contribute 
to asthma progression.16 17 Mitochondrial metabolism 
is involved in airways’ remodeling and the regulation of 
immune responses that are critical processes contributing to 
the pathogenesis of allergy and asthma. Therefore, here, we 
reviewed the relationship between mitochondrial signaling 
pathways and asthma pathogenesis.

MITOCHONDRIA DYNAMICS
Overall, mtDNA is much more susceptible to oxidative-
induced damage and degradation than nuclear DNA.18 
Mitochondrial dynamics, fission or fusion, maintain their 
high functional capacities in adverse conditions. The fission 
leads to mitochondria fragmentation and affects mtDNA 
integrity and respiration capacity. On the other hand, fusion 
promotes incorporation and preserves mtDNA function 
through several distinct mechanisms, including augmenting 

mtDNA resistance against mutations.19 When these mech-
anisms fail, non-functional depolarized mitochondria 
are selected for degradation, which is attributable to the 
reduced translocation of PINK1 from the outer to the inner 
mitochondrial membrane. This actives a series of consec-
utive reactions, leading to a reduction in mitochondria 
motility and their capture by phagophore (ie, mitophagy; 
the selective degradation of mitochondria by autophagy).20 
Finally, the lack of mitochondrial homeostatic function 
leaves cells susceptible to mtROS-mediated injury.21

MITOCHONDRIAL FISSION/FUSION
Fusion in mitochondria is regulated by Mfn1 and 2 that 
are expressed on the outer membrane, as well as Opa1 on 
the MIM, which help the two mitochondrial membranes 
fuse.22 23 Fission is orchestrated by mitochondrial fission 
factors, Fis1, MiD49, and MiD51, which facilitate the 
formation of focal rings around mitochondria, the recruit-
ment of cytosolic Drp1 on the surface of mitochondria, and 
finally mitochondrial cleavage. The balance between fusion 
and fission controls cellular metabolism and links mito-
chondrial structure to its function.22 24

Changes in the levels of fission vs fusion proteins play 
an important role in inflammation. Pink1, a mitochon-
drial targeted kinase, can interact with Fis1, promote the 
activity of E3 ubiquitin ligase Parkin, and finally target Mfn 
to degrade damaged mitochondria. Ubiquitination is in fact 
a quality-control process that can target Opa1, Drp1, and 
Fis1 to balance fission/fusion.22 25

Mitochondrial biogenesis has been shown to decrease in 
airways. On the other hand, increased fission and hyper-
fusion have been noted in COPD.26–28 In contrast, it was 
reported that asthma is associated with increased mito-
chondrial biogenesis, enhanced Drp1, and decreased 
Mfn2.26–28 Mitochondria affect Ca2+ hemostasis by modu-
lating the function of inositol ryanodine receptor channels 
and competing with ER Ca2+ ATPase for the reuptake of 
[Ca2+]cyt. Moreover, Mfn2, as a physical linker between the 
ER and mitochondria, controls the mitochondrial buffering 
of [Ca2+]cyt in ER microdomains, creating for mitochondria 
a Ca2+ reserve. Also, Mfn2 facilitates ER/PM interactions 
with activator proteins (such as STIM1 that senses ER Ca2+ 
level) and PM Ca2+ influx channels (such as Orai1).22 26 29 
Mitochondria also modulate Ca2+ influx by altering local 
gradients.

MITOCHONDRIAL AUTOPHAGY/MITOPHAGY
Autophagy represents a series of cellular processes aiming 
to recycle components and organelles through channeling 
them into lysosomes. In lung diseases, autophagy can 
protect cells against damaged cellular components due to 
inflammation or ROS. The clearance of damaged mito-
chondria (ie, mitophagy) is a type of selective autophagy 
that can activate apoptotic signaling pathways.22 30 31 In 
bronchial epithelial cells, mitophagy initiates after expo-
sure to cigarette smoke and progresses by the stabilization 
of the mitophagy-associated protein, Pink1. During mito-
phagy, the expression of Pink1 increases in epithelial cells, 
resulting in a reduction in the number of functional mito-
chondria, ending up in mitophagy-associated cell death.22 32 
In asthma, mitophagy-associated proteins (such as AMPK) 
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may act as a regulator and sensor of cellular energy and 
influence glycolysis and oxidative phosphorylation.22 30

Some other signaling pathways that regulate autophagy 
include TORC1 and cAMP-dependent PKA.33 During auto-
phagy (as an evolutionarily conserved lysosome-dependent 
degradation process), cytosolic cargos are engulfed by a 
double-membraned lipid bilayer that seals to form autopha-
gosome. Autophagosomes then fuse with lysosomes, leading 
to the destruction and recycling of the cargo engulfed. 
Under stress conditions, autophagy occurs in all cells and 
has crucial functions in disease and health.22 33 34

Mitochondria can regulate the initiation of autophagy 
signaling processes and serve as a membrane source for 
autophagosome formation. Most commonly, the kinases 
of ULK1 and/or ULK2 must be activated to trigger auto-
phagy.33 34 The ULK1 kinase forms a complex with FIP200 
(RB1CC1) and ATG13, which their activation leads to 
autophagosome nucleation and elongation. The activity of 
ULK1 is regulated through phosphorylation by upstream 
kinases. The activation of the mTORC1 kinase complex 
inhibits ULK1 and ATG13 phosphorylation, suppressing 
autophagy.22 34 35 Mitochondria provide a membrane source 
for formation of the autophagosome, specifically following 
starvation.36 In starvation, a reduction of the ATP content 
of cells leads to the activation of AMPK that in turn directly 
activates ULK1 by phosphorylation. On the other hand, 
suppressing the phosphorylation of mTORC1 indirectly 
regulates TSC2 and RAPTOR.22 34 35 So, mitochondria, 
through regulating ADP and ATP levels, modulate auto-
phagy. In addition, on starvation, the JNK-mediated phos-
phorylation of Bcl2 disrupts the Bcl2–beclin-1 interaction, 
triggering autophagy.22 33 35

Mitochondria have also an important role in autophagy 
regulation by affecting intracellular Ca2+ levels.37 Mito-
chondria take up the Ca2+ released by the ER on IP3R 
activation to warrant efficient oxidative phosphorylation 
and ATP generation and inhibit autophagy by suppressing 
AMPK activity. Also, mitochondria regulate autophagy 
initiation through ammonia generation mediated by 
mitochondrial-dependent glutaminolysis.38 Autophagy is 
upregulated by ammonia in a non-conventional (ie, ULK1 
or ULK2 independent) manner. In some conditions, mito-
chondria initiate autophagy by modulating PKA activity. 
Mitochondrial respiratory deficiency leads to the upregu-
lation of PKA that inhibits autophagy by suppressing Atg8 
expression (microtubule-associated protein LC3), which is 
required for autophagy.22 33 39

Under some circumstances, autophagy selectively 
degrades organelles. The autophagic degradation of mito-
chondria is called mitophagy that can remove damaged 
mitochondria to maintain healthy organelles. Also, mito-
phagy is an important process during erythropoiesis, 
depleting mitochondria during reticulocyte-to-erythrocyte 
maturation.40–42

The translocation of Parkin, a cytosolic E3 ubiquitin 
ligase, into dysfunctional mitochondria initiates mitophagy. 
The recruitment of Parkin to mitochondria depends on the 
function of PINK1, a mitochondrial kinase. Under normal 
conditions, this kinase is imported into the mitochondrial 
intermembrane space where it is inactivated through being 
cleaved by the rhomboid protease (PARL). On MOM, when 
mitochondrial membrane potential is lost (ie, a feature of 

unhealthy mitochondria), PINK1 accumulates and then 
recruits Parkin (a process that is dependent on PINK1 
kinase activity). Finally, Parkin promotes mitophagy in an 
AAA +ATPase p97-dependent manner.43–45

During erythrocyte maturation, programmed mitophagy 
effectively removes all mitochondria from reticulocytes. A 
protein called NIX (BNIP3) is a key player in this process42 
and recruits mitochondria into maturing autophagosomes 
through binding to a key autophagy protein (LC3). On the 
outer membrane of mitochondria, NIX displaces beclin-1 
from anti-apoptotic Bcl2, promoting formation of auto-
phagosome on mitochondrial membrane. A newly identi-
fied mitophagy pathway requires the autophagy proteins of 
ATG12 and ATG3, during which ATG12 covalently binds to 
ATG5, causing LC3 conjugation to PE. Also, ATG12 cova-
lently attaches to ATG3, and this complex promotes mito-
phagy following the dissipation of mitochondrial membrane 
potential. In addition, the ATG12–ATG3 complex regu-
lates mitochondria homeostasis via inhibiting mitochon-
drial expansion and promoting mitochondrial fusion.44 46 47 
Therefore, mitochondria are able to control many signaling 
processes. Another major metabolic function of mitochon-
dria is citrate production, as a major source of acetyl-CoA 
for protein acetylation, an important post-translational 
modification of many key signaling molecules. Both auto-
phagy and mitophagy increase mitochondrial damage and 
boost cells’ sensitivity to death and inflammatory cytokines’ 
production. In addition, mitochondria signaling is particu-
larly important in the pathogenesis of some diseases such as 
allergy and asthma.

MITOCHONDRIA AS A SIGNALING MACHINE
Mitochondrial along with nuclear DNA is necessary for 
the normal functioning of cells, and miscommunication 
between these two sets of DNAs can lead to pathological 
events in cells. Mitochondrial ATP generation is necessary 
for the normal thermodynamics of biochemical reactions. 
Also, mitochondria are involved in producing the proteins 
containing heme and porphyrin moieties; a phenomenon 
that is dependent on the membrane potential. The metab-
olites generated during the TCA cycle are precursors for 
the biosynthesis of lipids, proteins, nucleotides, and carbo-
hydrates. Thus, mitochondria are bioenergetic and biosyn-
thetic organelles with signaling functions beyond their 
metabolic roles.4

Signal transduction to the cytosol from mitochondria is 
referred to retrograde while that from the cytosol to mito-
chondria is known as anterograde signaling. Mitochondria-
derived signaling encompasses the release of cytochrome C 
to initiate cell death, ROS production to induce the expres-
sion of hypoxic genes, localization of AKAPs to the mito-
chondrial outer membrane, and allowing cAMP-dependent 
PKA to phosphorylate substrates on the outer membrane. 
Dysfunction in these pathways can induce mitochondria-
specific HSPs and promote cytosolic calcium-dependent 
signaling.4 48 49 Cytochrome C is an essential component 
of the electron transport chain and a key player for ATP 
generation. NADPH oxidase activity promotes signaling 
pathways by oxidizing particular cysteine residues in 
proteins, which modulates their activity. In fact, mtROS 
includes signaling molecules that facilitate communications 
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between mitochondria and other parts of the cell. Hypoxia 
stimulates ROS release from mitochondria, stabilizing HIFs 
and inducing the genes responsible for metabolic adapta-
tions in low oxygen conditions.50–52 Further, mtROS regu-
lates cellular metabolism and TNF-receptor signaling and 
is necessary for the optimal progression of many immune 
responses. Eight sites within the MIM and matrix are 
mainly responsible for ROS generation, which is controlled 
by mitochondrial oxygen concentration and membrane 
potential, as well as the redox state of electron transport 
chain complexes.53 54 AKAPs could be tethered to the 
outer mitochondrial membrane, which bind to the cAMP-
dependent serine/threonine kinase (ie, PKA), leading to the 
assembly of PKA with multiple signaling proteins. Survival 
signaling induces PKA-dependent phosphorylation and 
inactivation of BAD, a pro-apoptotic Bcl-2 family member 
that specifically binds to MOM.55 56 Mitochondria-bound 
PKA–AKAP complexes regulate oxidative reactions, fusion/
fission machinery, and hypoxic responses and allow cellular 
signaling pathways to converge on the mitochondrial PKA–
AKAP axis and control mitochondrial function. AKAPs, 
as anchor for PKA, act as scaffolds to coordinate many 
signaling enzymes’ activities, such as kinases and phos-
phatases.4 57 58 Thus, the mitochondrial outer membrane 
serves as a scaffold for the complexes that regulate immune 
responses.

MAVS is a crucial adaptor for RIG-I-like receptor 
signaling. In response to viral RNAs, RIG-I is induced 
and then promotes type I interferons’ production through 
MAVS, which is located in the outer mitochondrial 
membrane. Interferons (type I) can activate ISGs, as well 
as the NF-κB pathway to upregulate antiviral proteins 
and several proinflammatory cytokines and chemokines. 
Other innate immune molecules involved in TLR and NLR 
signaling are also associated with the MOM.59–63

Decreased ATP production, for example, during isch-
emia, regulates metabolic signaling pathways by increasing 
AMP production and adenosine breakdown. An increase in 
AMP level concomitant with decreased ATP level activates 
the AMPK kinase, which halts multiple anabolic processes 
and also promotes catabolic events such as autophagy in 
the cell.4 64

MAMs are necessary for the rapid transmission of Ca2+ 
signals between the mitochondria and ER to regulate intra-
cellular Ca2+ levels. MAMs also regulate mitochondrial 
shape and motility, production of ATP and ROS, ER stress, 
autophagy, and immune cells’ signaling pathways.65 66

MITOCHONDRIAL ENERGY SIGNALING
The triggers of mitochondria-related transcriptional signals 
are classified into the anterograde and retrograde catego-
ries. While anterograde signaling is the nuclear control of 
the mitochondrion, retrograde signals originate from the 
organelle itself and induces nuclear transcriptional repro-
gramming (a phenomenon that is often referred to as feed-
back or the backward flow of information).67 68

The ABI4 and 15/40/63 WRKY-type transcription factors 
are downstream regulators in mitochondrial retrograde 
signaling. Moreover, Ca2+ is involved in the mitochon-
drial retrograde response, and Ca2+ concentration is actu-
ally linked to ATP production. A uniporter complex using 

the mitochondrial membrane potential is involved in Ca2+ 
import. Also, Ca2+ influx into the mitochondrial matrix 
occurs in response to various abiotic stresses.67 69–72

MITOCHONDRIAL OUTER MEMBRANE AND APOPTOSIS
The MOM’s integrity is strictly regulated via interactions 
between the pro-apoptotic and anti-apoptotic members of 
the Bcl2 protein family. In the mitochondrial pathway of 
apoptosis (intrinsic), pro-apoptotic insults such as DNA 
damage activate two main Bcl2 family proteins, Bax and 
Bak. Activated Bax and Bak lead to MOMP and the release 
of cytochrome C and SMAC (DIABLO) into the cytoplasm 
where they promote caspases’ activation. When MOMP 
occurs, cells undergo caspase-independent cell death, which 
is most likely a consequence of a progressive decline in 
mitochondrial function.1 73

Although MOMP is associated with apoptosis induc-
tion, under some conditions, it can also promote non-lethal 
signaling functions. For example, mitochondria-mediated 
caspase-3 activation is required for the effective internal-
ization of the AMPA receptor via postsynaptic membranes, 
and also, mitochondrial activation of caspase-9 regulates 
myocyte differentiation. Interestingly, incomplete MOMP 
is probably essential for its non-cytotoxic signaling func-
tions in the conditions where the cell’s fate is to survive. 
Incomplete MOMP occurs through two mechanisms: (1) 
via expressing high levels of anti-apoptotic Bcl2 proteins 
and (2) via regulating mitochondrial dynamics. Mitochon-
dria constantly undergo cycles of fission and fusion with 
one another, and the inhibition of mitochondrial fusion 
promotes incomplete MOMP. Another potential mecha-
nism of incomplete MOMP includes the localized activa-
tion of BH3-only proteins (ie, a protein family that triggers 
Bax and Bak activation and MOMP).1 74–76

MITOCHONDRIAL PERMEABILITY TRANSITION ROLE IN 
APOPTOSIS AND NECROSIS
BA is one of ANTs (1, 2, and 3 in humans). CsA and BA 
inhibit apoptosis induction (eg, glucocorticoid-triggered 
thymocyte death or TNF-α-induced hepatocyte apoptosis) 
and protect mitochondria against the MMP-inducing effects 
of Bax and Bid recombinant proapoptotic proteins (two 
members of the Bcl-2 family). Moreover, the overexpres-
sion of cyclophilin D inhibits apoptosis induced by ANT1 
(cyclophilin D is an antagonist for ANT1 and 3). Also, 
cyclophilin D was shown to inhibit apoptosis induced by 
caspase-8, but not by Bax or RIP.77–79

MITOCHONDRIA AND APOPTOSIS CROSSTALK
Mitochondria have essential roles in apoptosis. Extensive 
cellular stress can lead to the release of pro-apoptotic mole-
cules, caspase activation, and apoptotic cell death. Induc-
tion of apoptosis is partially regulated by the same proteins 
involved in autophagy. In fact, Bcl-2, as an antiapoptotic 
protein, regulates both autophagy and apoptosis through 
binding to Beclin1 (a pro-autophagic protein) and Bax 
(a pro-apoptotic protein). In stressed cells, the release of 
Beclin1 activates PI3K and induces autophagy, accompanied 
by the release of Bax from Bcl-2, simultaneously triggering 
apoptosis. Thus, mitochondria health is a critical determi-
nant of autophagy or apoptosis and cell fate.80–82
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Class III PI3K, ATG4D, and Beclin1 can be cleaved by 
caspases on being translocated into mitochondria where 
they can amplify mitochondria-mediated apoptosis. In addi-
tion, the caspase-dependent cleavage of Beclin1 and PI3K 
destroys their function as pro-autophagic factors. Under 
cellular stress, ATG5 is also cleaved by calpains and translo-
cated to mitochondria where it binds Bcl-XL.80 83 84

MITOCHONDRIA AND AUTOPHAGY CROSSTALK
One of the cellular survival pathways, autophagy, recy-
cles intracellular components to compensate for the 
physiological degradation of organelles. Likewise, mito-
phagy regulates mitochondria number and health and is 
a key process for guaranteeing mitochondrial health and 
proper cell function. On the other hand, mitochondria 
can substantially influence autophagy. The pro-autophagy 
Beclin1/PI3K complex and the recruitment of activated 
ATG proteins induce autophagosome formation. Mfn1, 
Mfn2, and Opa1 are responsible for mitochondria fusion 
while fission is regulated by Drp1 and Mff. In addition, 
E3 ligase and MARCH5 regulate fusion through targeting 
Mfn1 and/or Mfn2. Overall, fusion and fission influence 
all aspects of mitochondrial function. Fusion is a way for 
the rapid exchange of metabolites, membrane components, 
and mtDNA, and fission facilitates mtDNA segregation and 
mitochondria isolation from the rest of the cell to prepare 
them for degradation.80 85–88

Damaged mitochondria are recognized by a voltage-
sensitive kinase, Pink1, which on the loss of the membrane 
potential (Δψm) is stabilized on the MOM. The Pink1 
accumulation on the mitochondrial membrane facilitates 
the recruitment of Parkin, an E3 ligase, to mitochon-
dria, allowing for the ubiquitination of Mfn1/2 fusion 
proteins and VDAC1.89–92 The accumulation of ubiquiti-
nated proteins facilitates the recruitment of the autophagy 
adaptor, p62, leading to the autophagosomal degradation 
of the damaged mitochondrion. NIX is another mitophagy-
related protein that its role in this process is yet to be further 
discussed.80 93 94

During starvation, a component of the mitochondrial 
outer membrane (ie, GFPcb5MitoTM) is transferred into 
autophagosomes, and endogenous Ambra1 is dissociated 
from Bcl-2, enhancing the interaction between Ambra1 
and Beclin1 on the mitochondria and ER membranes. The 
mitochondrial Ambra1/Beclin1 complex drives autophago-
some biogenesis from mitochondrial and ER membranes. 
Under nutrient-rich conditions, Bcl-2 inhibits autophagy via 
interacting with both Beclin1 (on the ER) and AMBRA1 (on 
mitochondria surface). A membrane-shaping protein with 
pro-autophagic activity (ie, endophilin B1) links mitochon-
dria to autophagosome biogenesis. Endophilin B1 activates 
the Beclin1–PI3K complex through binding to Beclin1 
adaptor (ie, UVRAG82) and drives autophagosome forma-
tion using mitochondrial membranes.80 95–97 Therefore, 
decreased ATP production induces autophagy in a mTOR/
AMPK-dependent manner.

MITOCHONDRIA ROLE IN NON-APOPTOTIC CELL DEATH
Mitochondria have roles in other forms of programmed cell 
death as well. For example, necrosis-like cell death is acti-
vated by several triggers, including death-receptor ligation 

that requires the RIPK3 kinase. RIPK3-dependent necrosis 
has important roles in boosting the host’s antiviral immu-
nity.98 99 Mitochondria are a major cellular source of ROS, 
and during RIPK3-dependent necrosis, they contribute to 
an increase in cellular ROS.99 100 Thus, RIPK3-dependent 
necrosis may be actually initiated by mitochondria. The 
alternative role of mitochondria in RIPK3-dependent 
necrosis may be mediated by the rapid depletion of cellular 
ATP, triggering the process. The interaction between ANT 
and CYPD is inhibited during RIPK3-dependent necrosis, 
leading to a reduction in ADP and ATP transport across 
mitochondria and diminishing cellular ATP levels. However, 
RIPK3-dependent necrosis was not affected by the absence 
of CYPD, negating a crucial role for the ANT–CYPD inter-
action in this pathway. Nevertheless, CYPD is required for 
necrosis, which is triggered by Ca2+ overload and ROS 
excessive production, implying a key role for mitochondria 
in necrosis triggered by these stimuli.98–101 So, mitochon-
dria can have essential roles in non-apoptotic cell death and 
various types of necrosis.

MITOCHONDRIA AND NECROSIS
Necrosis, as a random and uncontrolled process, leads 
to accidental cell death and probably plays a main role 
in diseases’ pathogenesis, similar to that of apoptosis and 
autophagy. “Programmed necrosis” is sometimes inappro-
priately referred to as necroptosis. In this pathway, PARP1, 
ADPH oxidases, RIP kinases, and calpains are potential 
signaling components.80 102

Pan-caspase inhibitors such as zVAD-FMK inhibit 
TNFα-induced apoptosis, which can direct some cells 
towards necrosis instead102 103; a turn that is blocked in the 
cells lacking RIP1serine/threonine kinase. Under normal 
conditions, RIP1 mediates the MAPK and TNF-receptor-
induced NF-κB signaling pathways and is normally asso-
ciated with cell survival. Moreover, under certain stress 
conditions, RIP1 can induce necrotic death by phosphor-
ylating and activating RIP3, which is a key mediator for 
necrosis progression. RIP3-deficient cells have been demon-
strated to be less sensitive to TNF-α- and Smac-mimetic-
induced necrosis.104–106

Genotoxic stressors (eg, oxidants and alkylating agents) 
trigger necrotic cell death accompanied by the overstimu-
lation of PARP1, a DNA repair enzyme. Ischemia-induced 
necrosis was reported to be attenuated by inhibiting 
PARP1. A strong cellular signaling network is responsible 
for PARP1-mediated cell death, during which the actions of 
calpains or CypD may be indispensable as their inhibition 
would block PARP1-induced cell death.107 108

Several studies reported that ROS scavengers could abro-
gate TNFα-induced necrosis in cells. During TNFα-induced 
necrosis, the NOX1 and NOXO1 subunits of NADPH 
oxidase are recruited to form a receptor complex via a 
RIP1-dependent manner. Moreover, the inhibition of 
NOX1 blocks the necrotic actions of TNF-α. In contrast, 
the NOX4 isoform role has been implicated in oxidized-
LDL-induced necrosis. Particularly, necrosis in macrophages 
can happen in a ROS-independent manner.68 102 109 110

Proteases, as proteolytic enzymes (eg, caspases, calpains), 
can also mediate programmed necrosis. Calpains, as cysteine 
proteases, are activated by Ca2+, and their inhibition results 
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in anti-necrotic effects. Indeed, PARP1-induced and also 
TNF-α-induced necrosis is dependent on the activation of 
calpains, followed by the cleavage and activation of pro-
apoptotic Bcl2 family proteins (such as Bax), cytoskeletal 
degradation, and lysosomal rupture.111–114

In the intrinsic apoptotic pathway, pro-death Bcl2 
proteins contribute to necrotic death. Also, in partic-
ular, Bax, Bmf, BNIP3, and Nix are parts of necrotic cell 
death.115 116 PARP1-mediated programmed necrosis is 
dependent on the mitochondrial translocation of Bax, 
but not Bak. Bax, in turn, induces necrosis by facilitating 
the release of AIF from mitochondria. Bmf is one of the 
important mediators of TNFα-induced necrosis, and its 
knockdown prevents TNFα-induced and zVAD-induced 
necrotic death. One of BH3-related proteins, BNIP3, can 
also induce necrosis. BNIP3 overexpression induces MPT 
and subsequently necrosis, and BNIP3-induced necrosis is 
blocked by inhibiting MPT via cyclosporine-A. Another 
BNIP3-related protein, Nix, can also induce both apoptosis 
and necrosis. Nix translocation to mitochondria induces 
apoptosis through activating the canonical intrinsic pathway. 
In contrast, ER-targeted Nix can induce necrosis through 
calcium-dependent MPT pore activation.19 102 117–119

MITOCHONDRIA REGULATE CASPASE-8 ACTIVITY
Mitochondria can regulate apoptosis through mechanisms 
other than MOMP, for example, by regulating caspase-8 
activation. In the extrinsic pathway, following ligand 
binding, apoptosis is initiated by death receptors, which 
requires caspase-8 activation that occurs at the intracellular 
tail of the receptor–ligand complex. Active caspase-8 either 
directly induces executioner caspases and promotes apop-
tosis, or alternatively recruits MOMP for the effective acti-
vation of executioner caspases and induction of apoptosis. 
Caspase-8 induces MOMP through cleaving and activating 
a pro-apoptotic Bcl2 family protein (ie, Bid) that in turn 
activates Bak and Bax.1 120

MOMP promotes caspase activation by releasing mito-
chondrial proteins, including SMAC, which blocks the 
ability of XIAP to inhibit caspase function. Interestingly, 
mitochondria are required for the effective function of 
the initiator caspase-8 following death receptor ligation. 
Caspase-8 is activated at the MOM in a process that is 
dependent on cardiolipin, a mitochondrial membrane 
phospholipid. Mitochondria-localized caspase-8 complexes 
cleave Bid and lead to MOMP. Disruption of the mito-
chondrial membrane association with caspase-8 inhibits its 
activity and disrupts MOMP, suppressing apoptosis.1 121 122 
Therefore, MOM as a signaling platform, is important to 
facilitate and direct caspase-8 activity where it is required.

MAMS, THE CONNECTORS OF THE ER AND 
MITOCHONDRIA
MAMs, as membrane structures, connect MOM to the 
ER. MAMs do not fully fuse the ER and MOM and keep a 
10–25 nm distance between them. MAMs, as physical and 
functional connectors, contain a variety of proteins such 
as IP3R Ca2+ channel (in the ER), VDAC1 (in the MOM), 
mitochondria dynamic-related proteins (eg, MFN1/2), 
chaperones (eg, calnexin, Grp75), lipid synthesis-related 
enzymes and transporters (eg, oxysterol-binding protein, 

cholesterol acyltransferase), and ER redox regulation 
enzymes (eg, Ero1α). MAMs connect mitochondria to the 
ER structurally and functionally and have important roles 
as signaling molecules and transporters. The IP3R Ca2+ 
channel (in the ER) is linked with VDAC1 (in the MOM) 
by Grp75 to form an ER-mitochondrial bridge to trans-
port Ca2+ between the two organelles.123–126 Furthermore, 
vesicle-associated protein (VAPB) in the ER and PTPIP51 in 
the MOM regulate ER–mitochondria connections. MFN2 
can also link the ER with mitochondria through MFN2–
MFN2 or MFN2–MFN1 interactions. Also, MFN2 can 
interact with PERK, an ER transmembrane protein, to link 
mitochondria with the ER. In addition, Bap31 can be linked 
to Fis1, which can also act as a tether for MAMs.12 127–130

MAMs play a main role in intracellular signal transduc-
tion and processes, including Ca2+-mediated signaling path-
ways, energy production in mitochondria, lipid transport, 
mitochondrial dynamics, and apoptosis. Ca2+, after being 
released from the ER, enters the IMS through IP3R-Grp75-
VDAC1 channels in MAMs. Then it can enter into the mito-
chondrial matrix and transmit stress signals through MCU 
in the MIM.131 132

The Ca2+ entering mitochondria has an important role 
in ATP production and determining cell fate. In normal 
circumstances, Ca2+ uptake by mitochondria can increase 
the TCA cycle activity and ATP production, but Ca2+ 
excess, on the other hand, can lead to mPTP opening and 
apoptosis. The Miro GTPase 1/2 (miro1/2) present in the 
MOM has a Ca2+-sensing domain, which regulates mito-
chondrial movement and maintains mitochondrial Ca2+ 
homeostasis.133–135

During ER stress, the number of MAMs increases, 
promoting Ca2+ transport between the ER and mitochon-
dria and boosting mitochondrial energy production. Under 
stress conditions, IRE1 is enriched in MAMs and promotes 
cell survival by inhibiting IP3R that stabilizes Ca2+ concen-
tration of the mitochondria. In MAMs, PERK can be linked 
to MFN2 on the MOM, forming MAMs’ scaffolds. The 
elimination of MFN2 leads to ER stress while PERK deletion 
reduces ROS production and stabilizes mitochondrial Ca2+ 
level. MFN2 in MAMs inhibits PERK activation. MAMs 
are also rich in chaperones (such as S1R, CNX, and CRT) 
that significantly contribute to ER stress signaling.136–140 
The transcription of S1R is increased by the PERK/EIF2α/
ATF4 pathway, and this molecule inhibits caspase-4 activity 
and plays a protective role under ER stress. Also, S1R stabi-
lizes IP3R and reduces ER Ca2+ release, stabilizing the 
concentration of this ion in MAMs. CNX and CRT, with 
a high affinity for Ca2+, buffer its concentration in MAMs 
and stabilize mitochondrial Ca2+ balance under ER stress. 
Also, CNX directly interacts with SERCA and regulates its 
activity.12 139 141 142 Therefore, ER stress is closely related to 
MAMs and affects their structure by regulating Ca2+ chan-
nels’ activity and chaperone expression. In turn, changes in 
MAMs affect the transmission of ER stress to mitochondria.

PERK can inhibit protein translation by phosphorylating 
elf2α and reducing Tim23-dependent protein import. This 
event reduces mitochondrial protein content and helps 
maintain protein homeostasis in this organelle. PERK can 
also increase the expression of LON that strictly regu-
lates mitochondrial protein homeostasis and degrades 
stress-damaged mitochondrial proteins. In addition, PERK 
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upregulates Grp75 expression via inducing ATF4. Grp75 
helps protein folding in the mitochondrial matrix. These 
chaperones, however, require energy (ie, ATP) to function 
properly. Moderately increased Ca2+ in mitochondria boosts 
mitochondrial metabolism via modulating Ca2+-dependent 
dehydrogenase activity in the Krebs cycle to promote the 
activity of the respiratory chain complex, ending up in ATP 
production.136 143–145 ATP-dependent chaperones and prote-
ases prevent the accumulation of misfolded or unfolded 
proteins, maintaining mitochondrial protein homeostasis 
and warranting MQC at the molecular level.

Cytosolic Ca2+ overload upregulates XO activity in 
cytoplasm, leading to ROS production. Then ROS phos-
phorylates serine 616 of Drp1, resulting in the accumula-
tion of Drp1 on the MOM, which promotes its division. 
When the membrane potential of mitochondria decreases, 
PINK1 is transported to the MOM where it recruits Parkin 
to initiate mitophagy. PINK1 then returns to MAMs when 
mitophagy promotes the binding of the ER to mitochondria 
and triggers autophagosome formation.12 146 147 Therefore, 
MAM-mediated Ca2+ signaling is an important trigger of 
mitochondria fusion and division under ER stress.

When ER stress is severe, MAMs transmit stress signals 
to mitochondria to initiate apoptosis. The release of Ca2+ 
from the ER causes mitochondrial Ca2+ overload via 
IP3R-VDAC1 channels, leading to mitochondrial depo-
larization, Bak and Bax oligomerization on the MOM, 
mPTP opening, the release of pro-apoptotic factors, and 
finally the activation of the mitochondrial apoptotic 
pathway. In contrast to Bax and Bak (pro-apoptotic Bcl-2 
family proteins), Bcl-2 and Bcl-xL (anti-apoptotic Bcl-2 
family proteins) can translocate to MAMs and promote 
cell survival by suppressing IP3R. Furthermore, the BH4 
domain of Bcl-xL targets VDAC1 and reduces mitochon-
drial Ca2+ influx through these channels, suppressing 
apoptosis.148–150 On the other hand, Bax interacts with 
VDAC and increases mPTP opening, promoting apoptosis. 
Severe ER stress inhibits the expression of anti-apoptotic 
proteins and increases that of pro-apoptotic Bcl-2 family 
proteins, accelerating ER Ca2+ release and leading to cell 
death. During ER stress, truncated SERCA1 (S1T) can be 
localized on MAMs, a phenomenon that is induced by the 
activity of the PERK–EIF2α–ATF4 axis of the UPR. Over-
expressed S1T amplifies Ca2+-induced apoptotic signals 
during ER stress.12 151 152 Therefore, MAMs can transfer 
death signals to mitochondria, and play main roles in MQC 
under ER stress, and also promote mitochondrial dynamics 
and homeostasis. A variety of diseases are associated with 
ER stress and mitochondria dysfunction, including allergic 
asthma. Therefore, further studies on the mechanisms 
regulating MAMs’ function under ER stress may help iden-
tify new therapeutic targets and develop novel treatment 
strategies for these diseases, including asthma.

CYTOCHROME C AND HEAT SHOCK PROTEIN-60
Cytochrome C and Hsp60 are two important mitochon-
drial markers. Cytochrome C is a part of the electron trans-
port chain in mitochondria. The heme group of cytochrome 
C receives electrons from the B-C1 complex and transfers 
them to the cytochrome oxidase complex. Extracellular 
succinate elevates when the integrity of cytochromes C1 

and B of the electron transport chain is compromised by 
either inhibitors or metabolic reprogramming.153 154

Hsp60 is a mitochondrial stress protein and a member of 
the chaperon family, which is induced under cellular stress 
and injury. Elevated levels of circulating Hsp60 have been 
detected in patients with asthma. Hsp60 is located in both 
mitochondria and cytosol, and its function is essential for 
the folding and assembly of the proteins newly imported 
into mitochondria; however, this function is compromised 
when mitochondrial activity is impaired. Hsp60 has been 
suggested to contribute to the severity of symptoms in 
asthma. According to studies, cytochrome C and Hsp60 are 
constitutively expressed in asthmatic fibroblasts, correlating 
with mitochondrial mass. The inhibition of PRMT1 enzy-
matic activity or the SMAD2/3 pathway decreased the 
expression of cytochrome C and Hsp60.154–157

PGC-1a is a metabolic regulator and transcriptional 
coactivator of cellular energy metabolism (ie, fatty acid 
oxidation, cholesterol catabolism, and gluconeogenesis) 
and activates mitochondria biogenesis and oxidative phos-
phorylation. PGC-1a is increased in the fibroblasts of asth-
matic airways, as well as TGF-β-stimulated fibroblasts. In 
addition, PGC-1a methylation by PRMT1 was shown to 
enhance mitochondrial biogenesis.154 158–160

Increased PGC-1a expression in asthmatic fibroblasts 
expands mitochondria mass. PGC-1a expression is induced 
by TGF-β1 or PRMT1. On the other hand, TGF-β1 acti-
vates myo-fibroblasts to produce extracellular matrix 
components such as collagen and fibronectin, increases 
ASM migration, decreases anti-apoptotic signaling, and 
stimulates cellular proliferation. Therefore, TGF-β can 
activate SMAD2/3 signaling and induce PGC-1a expression 
and fibroblast proliferation. Suppressing TGF-β1 by either 
blocking the SMAD3 pathway or the administration of 
anti–activin A reduces peri-bronchial fibrosis, ASM prolif-
eration, and mucus hyper-secretion.154 161 162

C/EBPs control the promoter of mito-ribosomal protein 
S12 and mitochondrial seryl-tRNA ligase that regu-
late Hsp60 mRNA translation. C/EBPb, as a mediator of 
TGF-β1-induced gene activity, is expressed during cell 
differentiation and induces the expression of C/EBPa and 
PPAR-g.154 163 164 Changes in C/EBPb expression affect the 
levels of PRMT1 and PGC-1a. All these factors are constitu-
tively upregulated in the fibroblasts of patients with asthma. 
Thus, C/EBPb is an important mitochondria mass regulator 
in fibroblasts. Therefore, TGF-β1-dependent remodeling of 
fibroblasts may help control asthma by suppressing PRMT1 
or C/EBPb,154 both of which present novel diagnostic and 
therapeutic targets in asthma.

MITOCHONDRIA MUTATIONS
The ADAM33 gene (on chromosome 20) is strongly asso-
ciated with asthma.6 In addition, there are some pieces of 
evidence indicating the possible involvement of mtDNA 
defects in asthma etiology. Over 25 genetic loci are asso-
ciated with asthma, many of which being related to the 
immune system, including the genetic loci of ORMDL3, 
2PBP2/GSDMB/ORMDL3, PDE4D, VEGF, Wnt, MMP-
12, importin 13, PRKCA, JAG1, ANKRD5, 12q24, 
TGF-β1, IL-12 beta, 10, 13, 17, 25, and beta2-adrenergic 
receptor.165–167
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Recently, it was shown that the “U” haplogroup (harboring 
common mitochondrial polymorphisms) was associated 
with total IgE level in asthmatic patients, highlighting the 
importance of mitochondrial genes’ mutations in allergic 
asthma.14 168 Many mutations in the mitochondrial genome 
have been associated with diseases with an inflamma-
tory component. The A930G polymorphism in the gene 
encoding cytochrome b has been related to predisposition 
to bronchial asthma. The rare A3243G-tRNA Leu (UUR) 
MELAS mutation was also found in asthmatic patients. 
Interestingly, mitochondrial tRNA and rRNA mutations 
are more frequent in patients with asthma.15 169–171 Some 
mitochondrial mutations have been linked with inflamma-
tory diseases. Fukuda et al identified that 9 out of 13 of the 
genes differentially expressed in allergic patients were mito-
chondrial (Cytochrome oxidase II, III, NADH dehydroge-
nase, etc.). Also, the cytochrome b gene’s polymorphisms 
were found in relation with asthma predisposition.15 170 172

MITOCHONDRIAL DYSFUNCTION AND LUNG DISEASE
Cellular bioenergy dysfunction leads to epithelial fragility, 
dysfunctional barriers, impaired secretory activities, and 
inflammation. Therefore, asthma and also bronchopulmo-
nary dysplasia, pulmonary hypertension, and COPD are 
strongly associated with mitochondrial dysfunction.173–175

The haplogroup “U” of the mitochondrial genome is 
associated with elevated IgE levels and allergic asthma. 
In maternal asthma, altered mitochondrial gene expres-
sion was observed in the placenta of asthmatic mothers. 
The deficiency of UQCRC2 in airway epithelial cells was 
reported to induce mitochondrial dysfunction, allergic 
airway inflammation, AHR, and mucus secretion. Airway 
epithelial cells of asthmatic patients show mitochondrial 
fragmentation and swelling, activated apoptotic pathways, 
and increased oxidative damage.15 17 21 157 176

ROS AND DAMP IN THE AIRWAY
In asthma, the excessive production of oxidant agents trig-
gers the expression of pro-inflammatory cytokines and 
activates the signaling cascades related to inflammation, 
extracellular matrix production, and Ca2+ trafficking. 
Inflammation and ROS can modify mitochondrial morpho-
logic characteristics and functions. Damaged mitochondria 
(due to inflammation and ROS) release multiple mitochon-
drial components into the cytosol or even extracellular 
mitochondrial DAMPs in the lung. DAMPs are known to 
activate PRRs (pathogen recognition receptors) such as 
TLRs, further exaggerating inflammation. ATP can act as 
a DAMP to mobilize Ca2+, activate inflammasomes, induce 
the release of mtDNA into the cytosol, and even increase 
mitochondrial ROS production.22 23 177–180

There is increasing recognition for the role of the autocrine 
effect of mitochondrial DAMPs in asthma pathophysiology. 
DAMPs activate PRR such as TLRs and induce inflamma-
tion. In airways, ATP is released by multiple cell types and 
acts as a DAMP when it is released in excess, inducing Ca2+ 
mobilization, inflammasome activation, release of mtDNA 
into the cytosol, an increase in mitochondrial ROS produc-
tion, and mitochondria dysfunction.22 181 182 Also, mito-
chondria regulate the innate immunity, which has main 
roles in the eradication of microorganisms or damaged cells 

through PRRs (PAMPs) that recognize conserved molec-
ular patterns in different microorganisms or the proteins 
released from damaged cells (DAMPs). This process actives 
pro-inflammatory cytokines’ secretion and signaling, subse-
quently inducing the adaptive immune response and ROS 
generation.22 182 183

ASTHMA AND MITOCHONDRIAL
Asthma, as a common complex disorder, places heavy 
economic burdens on individuals and societies. The main 
pathogenic mechanism of asthma includes allergic and 
immunologic reactions due to the inhalation of aller-
gens by patients, resulting in the early asthmatic response 
(EAR).6 184 Airway remodeling can occur in asthmatic 
patients. The predominant features of remodeled airways 
are fibrosis, basement membrane thickening, metaplasia of 
goblet cells, enhanced smooth muscle mass, and chronic 
inflammation. Dysmorphic mitochondria are also evident 
in the smooth muscle cells and epithelium of the airways of 
asthmatic lungs.10 26 185 186 In addition, mitochondria can be 
transferred to remodeled lungs via cell therapy.

In the signaling pathways involved in remodeling, Ca2+ 
has a central role in mediating an increase in mitochondrial 
mass, which enhances the proliferation of smooth muscle 
cells and induces lung remodeling. In these pathways, 
mtROS generation boosts TGF-β expression in airway 
epithelium in response to allergen challenge.10 26 TGF-β, 
as a major growth factor, is implicated in lung fibrosis and 
remodeling (figure 1).10 26

EOSINOPHILS AND ASTHMA
Eosinophils, as innate immune system cells, are involved 
in the pathogenesis of allergic asthma. Eosinophil account 
(forming approximately 3% of white blood cells in healthy 
individuals) is elevated in allergic asthma. Eosinophils, as 
important cells in asthma progression and airway remod-
eling, can be activated by IL-5 and then migrate to allergic 
airways where activated eosinophils release proinflamma-
tory and lipid mediators and toxic proteins (from their gran-
ules), which are able to induce bronchoconstriction, mucus 
hyper-secretion, airway thickening, and airway epithelium 
damage. The longevity of eosinophils may be enhanced 
by IL-5, IL-3, and GM-CSF.187–190 Indeed, IL-5 prevents 
Bax translocation and cytochrome C release and extends 
eosinophil survival by inhibiting mitochondrial membrane 
perturbation and caspase activation.191 Understanding the 
pathways involved in eosinophils’ survival and apoptosis 
is extremely important for recognizing the pathogenesis of 
eosinophilic inflammation in allergic asthma and for devel-
oping novel drugs to treat asthma.

Cellular apoptosis is executed via two different pathways, 
extrinsic (receptor-mediated) and intrinsic (mitochondrion-
centered). The extrinsic pathway is actually an immuno-
logical process initiated by the ligation of death receptors 
(Fas/CD95). These receptors lead to the formation of DISC 
protein that governs the activation of initiator Caspase-8 
that then directly activates effector caspases, executing 
apoptosis or cleaving Bid to create an additional mitochon-
drial loop. Bcl-2 family proteins have critical roles in moni-
toring intracellular damage and stress (such as oxidative 
stress, overload of cytosolic Ca2+, DNA damage, etc.) and 
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activate pore-forming Bax and MMP, as the main triggers of 
apoptosis. Also, MMP can be mediated through mitochon-
drial permeability transition (mPT), loss of mitochondrial 
membrane potential (ΔΨm), ATP synthesis suppression, and 
the release of pro-apoptotic factors such as cytochrome C 
to the cytosol. Cytochrome C leads to apoptosome forma-
tion, which activates initiator Caspase-9 that itself then 
induces effector caspases 3, 6, and 7 and finally apoptosis 
(figure 2).190 192 193

Eosinophils have a pivotal role in asthma pathogenesis, 
and delayed eosinophil apoptosis has been reported to 
participate in asthma pathogenesis. Eosinophil accumu-
lation and persistence at inflammation sites are mediated 
by IL-5. In fact, eosinophils rapidly undergo apoptosis 
unless they are exposed to IL-5.191 194 195 As noted before, 

interactions between pro-apoptotic (Bak, Bax, Bim, Bik) 
and anti-apoptotic (Bcl-xL, Bcl-2) proteins control apop-
totic pathways, mitochondria-centered reactions, and acti-
vation of caspases (as conserved death proteases of cells). 
Bcl-2 expression in the eosinophils of asthmatic patients is 
increased, and IL-5 has been reported to upregulate Bcl-2 
expression, which is responsible for the pro-survival role 
of IL-5 and its possible regulatory impacts on other anti-
apoptotic molecules such as Bax and Bcl-xL. Pro-apoptotic 
Bcl-2 homologue, Bid, is a target of Caspase-8 via a mech-
anism involving an interaction with Bax, leading to the 
release of cytochrome C, as an apoptosis initiator, and 
other stress mediators such as AIF and Smac/Diablo from 
mitochondria. Also, COXETC is a main oxidative enzyme 
in mitochondria and catalyzes electron transfer for ATP 

Figure 1  Mitochondria and asthma. Asthma is a major respiratory system disease that involves airways in the lung. Epithelial, goblet, 
smooth muscle, and immune cells are influenced in asthma. Mitochondria of airway cells are involved in asthma pathophysiology and 
have main roles in the health of the respiratory system, especially in bronchia, by influencing airway remodeling, fibrosis, eosinophilic 
inflammation, and cell apoptosis, necrosis, and autophagy, which can be regulated by both cellular and mitochondrial signaling pathways.

Figure 2  Mitochondrion and eosinophil apoptosis. Cell apoptosis is executed via the extrinsic (ie, receptor-mediated) and intrinsic (ie, 
mitochondrion-centered) pathways. The extrinsic pathway is activated by the ligation of the Fas/CD95, which leads to the formation of DISC 
protein and that regulates the activation of the initiator Caspase-8, as well as effector caspases, that to either execute apoptosis or activate 
the mitochondrial loop. In the intrinsic pathway, changes in the mPT changing forces mitochondria to release pro-apoptotic factors such 
as cytochrome C to the cytosol. Cytochrome C leads to apoptosome formation, which activates the initiator Caspase-9 and also caspases 
3, 6, and 7, that stimulate apoptosis. Eosinophils, as important cells in asthma exacerbations and airway remodeling, can be activated 
and migrated directed by IL-5. This cytokine prevents cytochrome C release and apoptosis in eosinophil apoptosis. Thus, mitochondrial 
dysfunction is associated with asthma severity.
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generation via oxidative phosphorylation.9 196–198 Cyto-
chrome c release from mitochondria leads to “apoptosome” 
formation, a caspase-9–activating complex comprising 
cytochrome C, Apaf-1, procaspase-9, and dATP. The acti-
vation of “initiator” caspases (ie, 8 and 9) results in the 
direct or indirect activation of “effector” caspases (ie, 3, 6, 
and 7).196 199 It was shown that IL-5 inhibited eosinophil 
spontaneous apoptosis via preventing Bax translocation, 
cytochrome C release, mitochondrial membrane perturba-
tion (by enhancing mitochondrial membrane permeability), 
and finally the activation of the caspase cascade,191 194 high-
lighting an important role for this cytokine in promoting 
eosinophil survival.

The IL-5 receptor induces rapid tyrosine phosphory-
lation and juxta membranous tyrosine kinase activation. 
The signal is initiated via the Jak2/STAT and Ras-Raf-1-
MAPK cascades. The activation of the Jak2, Syk, and Lyn 
tyrosine kinases and SHPTP-2 phosphatase is critical for 
IL-5–induced eosinophil survival. SHPTP-2 activation and 
its association with Grb2, as an adaptor protein, couple the 
IL-5 receptor to the Ras signaling pathway, followed by the 
requirement of Raf-1 serine/threonine kinase to promote 
IL-5–mediated anti-apoptosis actions.189 191 This pathway 
has important therapeutic implications for asthma and the 
diseases characterized by eosinophil-mediated inflamma-
tion. Apoptosis in eosinophils can be accelerated by Fas acti-
vation. Fas ligand is a significant pro-apoptotic factor, and 
the neutralization of the Fas–Fas ligand complex enhances 
airway eosinophilia in allergic asthma.189 190 200 Therefore, 
this pathway can also be another therapeutic target to 
suppress eosinophilic inflammation in asthma.

Eosinophils, by releasing their granules’ proteins, lipid 
mediators, and pro-inflammatory components, contribute 
to asthma exacerbation and airway remodeling. The 
eosinophils derived from the blood of asthmatic patients 
showed delayed apoptosis when compared with those of 
healthy people.201–203 Apoptosis is characterized by nuclear 
coalescence, mitochondrial changes, cell shrinkage, and 
DNA fragmentation. Interestingly, NO induces eosino-
phil apoptosis and regulates eosinophilic inflammation via 
promoting a pro-apoptotic effect through regulating JNK 
and caspases 6 and 3. Also, NO stimulates mPT which is a 
Ca2+-dependent and voltage-dependent channel in MIM, 
leading to changes in mitochondrial membrane potential 
(ΔΨm), mitochondrial release of cytochrome C and other 
pro-apoptotic factors to cytosol, and finally apoptosis initi-
ation. In asthma, however, these mechanisms have insignif-
icant roles in inducing eosinophil apoptosis. Nevertheless, 
the manipulation of these apoptotic pathways can reduce 
eosinophil survival and lung inflammation. Furthermore, 
NO-induced apoptosis in eosinophils via activating the JNK 
route may have therapeutic implications in asthma.201 204 205

Eosinophils play an important role in the pathogenesis of 
asthma, and delayed eosinophil apoptosis has been associ-
ated with asthma progression. IL-5 leads to the accumula-
tion and persistence of eosinophils in asthmatic airways and 
helps eosinophils evade apoptosis.191 206 Thus, mitochondria 
in asthmatic patients’ immune cells, such as eosinophils, can 
play important roles in modulating asthma course, urging 
the development of mitochondrial-directed therapeutics 
for this disease. Investigating novel immune cell regula-
tory mechanisms that underlie asthma pathophysiology can 

lead to the development of effective target-based asthma 
therapies.

BCL-2 HOMOLOGUES OF EOSINOPHILS
Susceptibility to programmed cell death is influenced by 
the ratio of death agonists to antagonists and subsequent 
heterodimerization and homodimerization of death-related 
proteins via conserved BH3 domains. Bcl-2 homologues act 
as the critical regulators of the apoptotic pathway and via 
interactions between pro-apoptotic (Bax, Bak, Bik, Bim) 
and anti-apoptotic (Bcl-2, Bcl-xL) proteins control the 
apoptogenic factors released from mitochondria and subse-
quent activation of caspases (ie, conserved cell death prote-
ases).191 192

Eosinophils endogenously express pro-apoptotic Bax and 
anti-apoptotic Bcl-xL at high levels while the level of anti-
apoptotic Bcl-2 is low in these cells. Evidence shows a higher 
Bcl-2 expression in the eosinophils derived from asthmatic 
patients. In IL-5–stimulated eosinophils, Bcl-2 is increased, 
extending the survival of these immune cells.191 198

During apoptosis, Bax, as a monomeric cytosolic protein, 
translocates from the cytosol to the outer mitochondrial 
membrane where it facilitates cytochrome C releasing and 
subsequent caspases’ activation. Caspases, as aspartate-
specific cysteine proteases, govern the final apoptotic 
phase.191 198

The receptor-mediated apoptotic pathway involves the 
ligation of death receptors (CD95 (Fas/Apo-1) and tumor 
necrosis factor receptor-1) on the plasma membrane, 
followed by Caspase-8 recruitment to the receptor 
complex. The proapoptotic Bcl-2 homologue, Bid, is the 
target of Caspase-8 in this pathway, which after proteolysis 
is translocated from the cytosol to mitochondria to interact 
with Bax and trigger cytochrome C release.191 198 207 In this 
apoptotic route, cellular signaling mediators induce pertur-
bation in mitochondrial membrane potential to allow for 
the release of apoptosis adaptors (cytochrome C, AIF, and 
Smac/Diablo) and apoptosome formation. Finally, the acti-
vation of caspases 8 and 9 induces the effector caspases of 
3, 6, and 7.191 196 198 199 207

MITOCHONDRIA, OBESITY, AND ASTHMA
Body mass index has a positive correlation with severity 
of asthma. Therefore, mitochondria can have roles in the 
pathogenesis of obesity-associated asthma. Mitochondrial 
dysfunction causes metabolic syndrome and obesity, and 
the role of mitochondria in the pathogenesis of asthma in 
obese individuals would be a relatively new concept.17 167 208

Metformin has been noted to show anti-asthma potentials 
and attenuate inflammatory reactions in obese individuals. 
In patients with COPD, metformin reduces dyspnea and 
modulates the let-7/lin28 axis, which is a critical contrib-
utor to the determination of cellular OxPhos capacity, tissue 
repair, and aging. Let-7 miRNA was implicated in asthma 
pathogenesis.21 209–212 In this regard, miRNAs, as mito-
chondrial function modulators, appear in the two classes 
of hypoxamirs and mitomirs. Hypoxamirs are induced in 
hypoxic conditions and are relevant to asthma. MiR-210, as 
the best known hypoxamir, is inducible by nuclear NF-κB 
and is increased in severe asthma. It is noteworthy that ISCU 
1/2, which activates redox reactions in mitochondria, and 
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Foxp3, a transcription factor of T-reg cells, are among the 
direct targets of miR-210, supporting a pro-inflammatory 
state during chronic hypoxia.21 213–215

Mitomirs are specific miRNAs present in mitochondria 
and are linked to mitochondrial function and dynamics. 
Accordingly, miR-149 was reported to enhance mito-
chondrial biogenesis via inducing poly (ADP-ribose) poly-
merase-2, peroxisome proliferator-activated receptor-γ 
coactivator-1α (PGC-1α), and Sirt-1. In addition, MiR-761 
and miR-30 are involved in mitochondrial fission, and MiR-
183 inhibits OxPhos by targeting IDH2, which may be a 
relevant therapeutic target. Also, miR-183 downregulates 
the expression of Ca2+-activated K+ channels (BKCaβ1); 
a phenomenon that possibly increases the risk of pulmo-
nary hypertension. The aerosol-based lung delivery of 
the antagonists of miR-210 and miR-183 has been prom-
ising for treating pulmonary hypertension and related 
diseases.21 216–218

Mitochondria transfer may be a beneficial mechanism to 
replace defective organelles. This can be accessible using 
methods such as microinjection, gap junctional channel-
mediated cell attachment, intact purified mitochondria 
injection, incubation with mitocytoplasts, and direct transfer 
from donor to recipient cells via cytoplasmic bridges (called 
TNT). For efficient penetration of mitochondria into cells, 
some cell-penetrating peptide-based tags have been effec-
tive in next-generation naked mitochondrial transfer tech-
niques. Damage to mitochondria can enhance inflammation 
and trigger a potent innate immune response; therefore, 
these organelles should be carefully isolated.21 219–221 It was 
found that Miro1, as a calcium-sensitive GTPase, regulates 
intracellular mitochondrial transport via TNT, suggesting 
a potential therapeutic target for effective mitochondria 
transport to treat asthma. Pluripotent stem cell-derived 
MSCs may be used as rich sources of mitochondria.21 222 223

ASTHMA, NO, AND ARG
High levels of FENO are generated by iNOS, and arginine 
is also catalyzed to NO and citrulline in the epithelium of 
asthmatic airways. Although iNOS expression and FENO 
elevation in asthma promote inflammatory injury and 
AHR, arginine-analog iNOS inhibitors have shown low effi-
cacy in treating asthma. High activity of iNOS and elevated 
levels of arginine induce ARG to catabolize arginine to orni-
thine and urea, which both are increased in the plasma of 
patients with asthma. ARG1 is exclusively present in the 
cytosol of hepatic cells (participating in the urea cycle), 
but ARG2 is found in the mitochondria of many tissues. 
Surprisingly, ARG2 gene variants lie within an asthma-
linked region on chromosome 14q24 and are strongly 
associated with asthma severity. The function of ARG2 in 
mitochondria is unknown; however, it may be involved in 
arginine metabolism to support the bio-energetic state. In 
asthma, ARG2 seems to provide endogenous arginine for 
NO synthesis.224–228

The provision of oxidative intermediates by the arginine/
ornithine metabolic pathway in mitochondria may have 
important consequences for inflammation signal trans-
ducers in bronchi. Adaptive transcriptional responses to the 
TCA cycle are mediated by HIFs. Prolyl hydroxylases use 
oxygen and αKG for the catalytic hydroxylation of HIFs, 

targeting these factors for degradation. HIF-1α is expressed 
ubiquitously while HIF-2α expression is restricted to 
certain tissues. In inflamed allergic airways, HIFs are in 
part regulated by IL-13 production. IL-13 induces the 
typical features of asthma (ie, mucin hyper-secretion and 
eosinophil recruitment to airways). The majority of IL-13–
mediated downstream inflammatory effects are promoted 
through STAT6. Elevated arginine metabolism through 
ARG2 increases oxidative metabolism and contributes to 
signal transduction via HIF and STAT6, suppressing bron-
chial inflammation and reducing asthma severity.224 229–232

In particular, arginine metabolism is interconnected 
with allergy, metabolic processes, and mitochondrial func-
tion. ADMA is an endogenous uncoupler of nitric oxide 
synthase and is strongly associated with metabolic processes 
in obesity and asthma. On the other hand, IL-4 modulates 
ADMA metabolism. The synergistic action of IL-4 and 
ADMA reduces the number of mitochondria in cells and 
increases mtROS via prompting cellular hypoxic responses 
and consequently downregulating TFAM and PGC 1α. 
Also, the mitochondrial haplogroup U and mitochondria-
encoded genes’ polymorphisms have been associated with 
increased IgE production and asthma.153 224 233 234 Alto-
gether, the transport of ornithine into the mitochondrion 
contributes to the de novo synthesis of arginine for NO 
production, modulates the redox state, and suppresses the 
pathological HIF signaling events, which lead to IL-13 and 
STAT6 activation. Allergens and air pollutants cause lung 
inflammation in part through mtROS, and mitochondrial 
antioxidant coenzymes, Q10 and Mito Q, can be effec-
tive to reverse this pathogenic event during mitochondrial 
transfer therapy.224 To correct mitochondrial dysfunction in 
asthma, three main clinical interventions could be applied, 
including the repair, reprogramming, or replacement of the 
defected organelle. Therefore, understanding the inflam-
mation pathways affecting mitochondria can provide new 
potential targets to cure asthma. Induced pluripotent stem 
cells and MSCs may be applicable to introduce healthy 
mitochondria to replace dysfunctional ones.

ASTHMA AND GLYCOLYSIS
Evidence indicates that EAR (including hypoxia and ASM 
contraction) and glycolysis are interrelated with each 
other.6 235–237 Glycolysis is a key regulatory process in 
EAR pathogenesis. Phosphoglycerate kinase 1, as a glyco-
lytic pathway enzyme, catalyzes the reversible conversion 
of 1,3-diphosphoglycerate to 3-phosphoglyceric acid, 
yielding a single ATP molecule. Phosphoglycerate kinase 
1 also enhances glycolytic capacity and helps preserve 
cellular energetics during hypoxia. Pyruvate kinase, another 
enzyme in this pathway, transfers a phosphate group from 
phosphoenolpyruvate to ADP, producing ATP and pyru-
vate. This energy regeneration pathway is independent of 
oxygen supply and allows cells to survive under hypoxic 
conditions.238 239 Glyceraldehyde-3-phosphate dehydroge-
nase is another essential glycolytic enzyme that converts 
glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate 
during glycolysis. The enhanced expression of all the 
mentioned proteins in asthma suggests the upregulation of 
glycolysis during EAR. Beta-enolase and phosphoglycerate 
mutase are two other glycolytic enzymes found in lung 
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proteome and are involved in the regulation of glycolysis 
rate. Decreased expression of these enzymes can modulate 
glycolysis rate and the ATP-dependent reactions involved 
in EAR. These glycolytic enzymes facilitate the anaerobic 
production of ATP and increase cellular energy demands 
on ASM contraction induced by airway obstruction during 
hypoxia. It should be noted that glycolysis only provides 
two ATP molecules while lactic acid and oxidative phos-
phorylation, under hypoxic conditions, are more efficient 
energy-supplying processes.6 240

Glycolytic enzymes may share a role in the hyperplasia 
or hypertrophy of ASM in asthma. During EAR, glyco-
lytic proteins may contribute to airway remodeling, and 
the formation of Ca2+/calmodulin complex can activate 
the myosin light-chain kinase that, in turn, mediates ASM 
contraction. Cells contain a variety of Ca2+-binding proteins 
(CaBPs) that regulate cytosolic Ca2+ level and Ca2+-mediated 
intracellular signal transduction. S100 proteins are highly 
homologous low-molecular weight proteins constituting a 
CaBP family. Two members of this family, S100A8 and A9, 
also known as calgranulins, play a role in the initiation and 
progression of asthma through provoking a number of pro-
inflammatory signaling pathways, including p38 or p44/42 
MAPK and NF-κB. Consistently, S100A8 and S100A9 inhi-
bition reduces inflammatory cells’ migration to the lung 
in asthma. On the other hand, ERp29, as an ER lumen-
resident protein, interacts with Ca2+-binding chaperones on 
the mitochondrial membrane and indirectly influences Ca2+ 
transport. It has been established that a change in Ca2+ 
level can manipulate ASM contractility and mucous glands’ 
and mast cells’ secretory activity in asthma. Therefore, the 
agonist/antagonist-induced manipulation of Ca2+ signaling 
and homeostasis can be regarded as a possible therapeutic 
strategy to manage asthma. These findings suggest key roles 
for energy adaptation and Ca2+ signaling in the develop-
ment and progression of asthma.6 241–243

AIRWAY REMODELING AND THE ROLE OF 
MITOCHONDRIA
Increased ASM mass and fibroblast dysfunction are two 
main characteristics of airway remodeling. In addition, the 
accumulation of dysmorphic mitochondria may be relevant 
to airway remodeling in asthma.22 154 173 244 TGF-β is also 
involved in subepithelial fibrosis, ASM remodeling, and 
mucus production. This factor induces remodeling through 
inducing PRMT1 expression in pulmonary fibroblasts and 
may contribute to glucocorticoid resistance in asthmatic 
patients. In turn, PRMT1 can regulate post-translational 
arginine methylation, which plays important roles in intra-
cellular signal transduction and extracellular biological 
interactions. Arginine methylation in histones and other 
proteins, catalyzed by PRMT1, is a relatively new identi-
fied protein modification and is implicated in intracellular 
signaling, DNA repair and integrity, protein–protein inter-
actions, and gene expression regulation.245–249 PRMT1 
augments extracellular matrix deposition through ERK1/2-
STAT1 signaling in ASM and fibroblasts and therefore 
contributes to mitochondria function. The TGF-β-activated 
signaling pathway boosts PRMT1 expression and leads to 
mitochondria dysfunction through the SMAD2/3, C/EBPb, 
PRMT1, PGC-1a signaling cascade. Both TGF-β1 and C/

EBPb are upstream to PGC-1a and PRMT1 expression 
(figure 3).154 250

Mitochondria act as the powerhouse of cells by ATP 
generation, so their dysfunction is linked to the pathogen-
esis of chronic lung remodeling diseases, including asthma 
and COPD. Mitochondria modulate intracellular signaling 
pathways and are a source of intracellular ROS production, 
through which they can promote apoptosis. In the dust cells 
(ie, alveolar macrophages) and pulmonary epithelium of 
asthmatic patients, the overexpression of TGF-β1 induces 
mitochondrial dysfunction. As a matter of fact, TGF-β1 
is an important mediator of sub-epithelial fibroblasts’ 
differentiation and activation.154 251–253 Therefore, TGF-β 
therapy to inhibit the production of Th2 cytokines may not 
be applicable for treating asthma, and this cytokine may 
be a powerful trigger of lung remodeling and other related 
problems in asthma.

THREE LEVELS OF MQC
Mitochondria are important organelles for energy genera-
tion and cellular apoptosis, signaling, and differentiation. 
MQC maintains the number of mitochondria, as well as 
their structure and functional integrity and contains three 
molecular, organellar, and cellular levels.12 254–256

Mitochondria maintain MQC at the molecular level by 
improving protein folding ability, reducing protein import, 
and clearing damaged and non-functional proteins. Nuclear 
DNA encodes most mitochondrial proteins. After synthesis 
in cytoplasm, these proteins are imported into mitochondria 

Figure 3  Airway remodeling and mitochondria. The 
accumulation of dysmorphic mitochondria is related with asthma 
and airway remodeling and will be done with increased ASM 
mass and fibroblast dysfunction. TGF-β induces PRMT1 expression 
in lung fibroblasts and can regulate post-translational arginine 
methylation which play important roles in signal transduction and 
events in the extracellular milieu. Arginine methylation displays a 
novel protein modification which is implicated in the intracellular 
signaling, DNA repair and processing, protein–protein interaction, 
and gene expression regulation. PRMT1 upregulates extracellular 
matrix deposition through ERK1/2-STAT1 signaling. The TGF-β-
activated signal pathway augments PRMT1 expression and caused 
mitochondria dysfunction through the SMAD2/3, C/EBPb, PRMT1, 
PGC-1a signaling sequence. The TGF-β1 and C/EBPb are upstream 
of PGC-1a and PRMT1 expression. In the alveolar macrophages 
and epithelial cells, TGF-β1 overexpression induces mitochondria 
dysfunction that leads to remodeling of bronchi.
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after correct folding. In the cells that are under stress, the 
proteins entering mitochondria are not properly folded, 
which causes unfolded/misfolded protein accumulation 
in the matrix, triggering mitochondrial UPR. In dysfunc-
tional mitochondria, GCN2 (an EIF2α kinase) is activated, 
which decreases protein translation, including TiM17A 
and TiM23, the main subunits of MIM channels, reducing 
protein import into mitochondria. When mitochondrial 
protein import efficiency is declined, ATFS-1 is translo-
cated into the nucleus where it upregulates the expression 
of mitochondrial matrix chaperones and proteases, such 
as ClpP and HSP60/10. Hsp60/10 helps newly imported 
proteins to fold properly, and ClpP is responsible for the 
degradation of misfolded, unfolded, and damaged proteins 
(table 1).257–259

At the organellar level, MQC regulates mitochondrial 
dynamics to ensure intact mitochondrial fusion and fission, 
motility, and mitophagy. Mitochondria maintain a dynamic 
balance between fusion and fission. Under mild stress, mito-
chondria undergo fusion with the help of MFN1/2 and OPA1 
proteins to form a more functional organelle. MFN1/2 on 
the MOM is responsible for the fusion of outer membranes, 
and OPA1 on the IMS is responsible for the fusion of MIMs. 
Mitochondria division increases the number of these organ-
elles under normal conditions and on exposure to severe 
stress. For this purpose, phosphorylated Drp1 is recruited 
to the MOM of damaged mitochondria, directing the divi-
sion process, followed by the removal of these organelle 
remnants by mitophagy.260–262 In addition, under abnormal 
environmental circumstances, mitochondria move to a suit-
able location, mediated by a MOM receptor, Miro, which 
is a Rho-GTPase molecule (containing two Ca2+-binding 
EF-hand motifs and two GTPase domains) and facilitates 
mitochondria movement.12 263

Under severe stress, mitochondria initiate the apoptotic 
pathway to ensure MQC at the cellular level. Bax and Bak, 
two pro-apoptotic proteins of the Bcl-2 family, are oligo-
merized in the MOM and contribute to mPTP opening 
to maintain MQC under lethal stress. The mPTP is a 
multi-protein channel consisting of VDAC, cyclophilin-D, 
and ANT. When mPTP opens, cytochrome C and AIF, as 
pro-apoptotic factors, are released into cytoplasm where 
cytochrome C forms apoptosomes with the participation 
of Apaf-1 to activate Caspase-9 and subsequently other 
downstream apoptotic factors (caspase 3/7) and mediate 
programmed cell death. On the other hand, AIF migrates to 
the nucleus, leading to chromatin fragmentation and DNA 
degradation, and resulting in cell death.264–266

MITOCHONDRIA TARGETING
Mitochondrial dysfunction plays important roles in the 
genesis of lung diseases, and the impacts of these dysfunc-
tional organelles can be addressed mainly through three 
strategies: scavenging ROS, reprogramming regulatory 
pathways, and replacing damaged mitochondria by healthy 
exogenous substitutes.21

For reversing the function of defected mitochondria by 
scavenging ROS, universal antioxidants such as vitamin E are 
beneficial. CoQ10, as a strong mitochondrial antioxidant, 
is conjugated with a triphenylphosphonium cation group, 
which leads to mitochondrial accumulation and prevents 
oxidative damage to this cellular component.21 267 Mito-
TEMPO is a triphenylphosphonium-like mitochondria-
targeted antioxidant and can protect mitochondria 
during CS exposure and preserve their function. Tiron is 
another mitochondria-targeted antioxidant and effective in 
repairing dysfunctional mitochondria in COPD and after 
exposure to ozone. Mito-TEMPO attenuates mitochondrial 
production of ROS and collagen deposition in airway cells 
during allergic inflammation. Antioxidants like vitamins E 
and C positively interfere with mitochondrial signaling and 
biogenesis. Nrf2, as an antioxidant defense transcription 
factor, exhibits a cytoprotective role in the lung exposed 
to oxidative stress. Sulforaphane, as a prototypical Nrf2-
stimulated molecule, enhances mitochondrial antioxidant 
defense against a variety of oxidant stressors in respiratory 
diseases. Nevertheless, Nrf2-inducing agents, when used as 
potential therapeutics, have been associated with increased 
risk of cancer.21 24 268–273 PQQ, a cofactor in the bacterial 
respiratory pathway, stimulates mammalian mitochondrial 
biogenesis through a PGC1-α-dependent manner and acts 
as a powerful mitochondrial antioxidant (1000-fold more 
powerful than vitamin C). Therefore, PQQ may be bene-
ficial to treat the diseases associated with oxidative stress 
(eg, asthma), at least partly through repairing mitochondrial 
function.21 274 275

THERAPEUTIC POTENTIAL OF MITOCHONDRIAL 
TARGETING
The antioxidants specifically targeting mitochondria, such 
as MitoQ, accumulate in negatively charged mitochondria 
and suppress ROS production, protecting the organelle 
against oxidative damage. Another mitochondria-specific 
antioxidant, mito-TEMPO, are also effective in blunting 
fibrosis in asthma. MitoQ and Mito-TEMPO help restore 
mitochondrial function. In association with yet another 
mitochondria-targeted antioxidant, Tiron, MitoQ reverses 
mitochondrial dysfunction in the ASM of patients with 
asthma. Therefore, modulating mitochondrial fission/
fusion balance and biogenesis is applicable to control 
inflammation in allergic asthma. A potential limitation 
of this approach is that fission and fusion are dynamic 
processes and even under normal conditions are intricately 
connected to mitochondrial motility and metabolism, as 
well as downstream cellular signaling pathways. So, any 
deviation in the fission/fusion balance can result in unpre-
dicted side effects. It is also noteworthy that mitochondrial 
damage may not always be evident or result in cell death in 
vivo, and some levels of damage can stimulate mitochon-
drial biogenesis.21 22 273 276 277

Table 1  Three levels of mitochondria quality control

MQC

Molecular level Improving protein folding

Reducing protein import

Clearing non-functional proteins

Organelle level Fusion

Fission

Mitophagy

Motility

Cellular level Apoptosis

Cell death
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ASTHMA AND MITOCHONDRIAL-DIRECTED THERAPIES
Mitochondrial-directed therapeutics are relatively new, and 
understanding their role in asthma treatment needs more 
studies. Mitochondria are sources of ROS and susceptible 
to oxidative damage (ie, the oxidation of mtDNA, proteins, 
Coenzyme Q reductase (complex I), and other respira-
tory complexes), resulting in impaired electron transport 
chain and increased production of mtROS. Antioxidants 
can particularly protect mitochondria against oxidative 
damage. As mentioned, MitoQ, as a mitochondria-targeted 
antioxidant composed of ubiquinone covalently linked to 
a cationic moiety, has promised a highly effective thera-
peutic agent and is able to selectively accumulate within the 
MIM of negatively charged mitochondria. MitoQ quenches 
ROS, including superoxide and peroxynitrite, and protects 
mitochondria against oxidative damage.10 278 279 Studies 
suggest that mitochondrial-directed therapies can alleviate 
lung remodeling. In line, mito-TEMPO, as a mitochondrial-
directed antioxidant, was shown to decrease TGF-β activity, 
a key member of the pulmonary pro-fibrotic signaling 
pathway.10 26

NATURAL ANTIOXIDANTS
Various natural compounds have been reported to protect 
mitochondria against oxidative damage, such as coen-
zyme Q, glutathione, α-lipoic acid, α-tocopherol, pyru-
vate, creatine, acetyl L-carnitine, and choline, which have 
demonstrated beneficial effects in asthma. Coenzyme Q10 
supplementation, as a mitochondria-targeted antioxidant, 
can reduce the required dose of corticosteroids in asthma. 
Further, coenzyme Q10 restores eNOS activity and reduces 
free-radical formation. Also, α-tocopherol reduces mito-
chondrial dysfunction in asthma, and α-lipoic acid was 
noted to promote its anti-asthmatic effects by inducing 
PPAR-δ expression. The PPAR-α/PGC-1α pathway can 
improve mitochondrial bioenergetics.280–283 Resveratrol has 
also been described to improve mitochondrial function in 
asthma by activating SIRT-1 and SRT1720; while SIRT-1 
induces mitochondrial biogenesis via a PGC-1α-dependent 
route, SRT1720 mitigates the symptoms of allergen-
induced inflammation in airways. Resveratrol also increases 
INPP4A expression, whose role has been documented in 
asthma.17 284–290 Although various antioxidants have shown 
beneficial effects on mitochondrial function and asthma 
symptoms, their applicability as therapeutic agents needs to 
be established in future clinical trials.

TARGETING MITOCHONDRIAL REGULATING FACTORS
As two critical phospholipids, CL and PA participate in mito-
chondrial dynamics. PA is synthesized in the ER and then is 
transported to the OMM. A portion of PA is converted to 
CL, which is the major lipid of the IMM. The accumula-
tion of PA augments Mfn-1/2-dependent OMM fusion via 
Opa-1 conjunction. GTP hydrolysis and Drp-1 oligomeri-
zation rearrange the liposome membranes containing CL to 
form a CL-enriched membrane region that facilitates scis-
sion. Also, CL triggers GTPase activity and Opa-1 assembly, 
resulting in the tubulation and constriction of the liposomal 
membrane. During fission, actin reorganization and myosin 
II activity are regulated by the balance between the produc-
tion and catabolism of PA. Thus, a potential link between 

Mito-PLD, phosphatide phosphatase-1 action, phosphatidic 
acid-preferring phospholipase A1 activity, and actin/myosin 
II-regulated mitochondrial constriction has been proposed 
to be important in ASM and asthma.291 292 Dysmorphic mito-
chondria have been observed in the ASM and epithelium 
of patients with asthma. Increased baseline respiration and 
mitochondrial mass are associated with elevated cytosolic 
Ca2+ levels, contributing to AHR and cellular proliferation 
in asthma. Also, the morphology of fused mitochondria is 
influenced by the molecular mechanisms governing steroid-
resistant allergic airway inflammation. The accumula-
tion of fragmented mitochondria induces the cleavage of 
Caspase-9 and Caspase-3 and potentiates the mitochondrial 
apoptotic pathway. So, mitochondria-targeted antioxidants 
reduce ROS-induced toxicity against this organelle and are 
emerging therapeutics to treat asthma.291 293

Microtubule-dependent movement is a major mech-
anism of mitochondrial transport. In addition, half of 
motile mitochondria move anterograde. Several proteins 
are involved in anchoring mitochondria to microtubules, 
such as Rho GTPases, Miro 1/2, TRAK1, and TRAK2. 
During this process, Milton1/2 binds to Miro-proteins and 
motor-proteins, and TRAK1 attaches to dynein and kinesin 
(two motor proteins). On the other hand, TRAK2 binds to 
dynein only for retrograde movements.294 295 KIF5 is a key 
motor regulator of mitochondrial trafficking in neurons. 
Mammals have three KIF5 isoforms. Other proteins, such 
as synaptabulin, RAN binding protein 2, and fasciculation 
and elongation protein zeta 1 (FEZ1), interact with KIF5 
and mediate anterograde mitochondrial trafficking. The 
Miro-TRAK1/2-dynein complex is critical to avoid mito-
chondria accumulation. Moreover, Arp11/Arp10p complex 
acts as an important mediator for the retrograde movements 
of mitochondria. Loss of either Miro or Mfn2 halts the 
spread of dysfunctional mitochondria. Also, disturbed Ca2+ 
homeostasis decreases mitochondrial motility. Abnormal 
turnover is an important aspect of cell dysfunction, and the 
modulation of mitochondria transport in the lung is neces-
sary for designing effective therapeutic strategies against 
asthma.294 295

PGAM is an important enzyme in gluconeogen-
esis and glycolysis that converts 3-phosphoglycate to 
2-phosphoglycate. This enzyme also participates in regu-
lating programmed cell death and mitochondrial dynamics 
through its Ser/Thr/His phosphatase activity. In addition, 
PGAM5 modulates immune responses such as NKT-
mediated inflammation and promotes IL-1β-induced reac-
tions via caspase-1-related inflammasomes. At the cellular 
level, PGAM5 silencing inhibits inflammation and necrosis. 
As a phosphohistidine phosphatase, PGAM5 can specifically 
bind to and dephosphorylate NDPK-B (at H118), inhibiting 
NDPK-B-mediated histidine phosphorylation. This phos-
phatase further activates K+ channels and negatively regu-
lates CD4+ T cells via NDPK-B dephosphorylation. It has 
been noted that PGAM5 inhibition reduces necroptosis by 
suppressing Drp1. Exploring the role of PGAM5 in asthma 
and airway injury may offer a new anti-asthma treatment 
strategy.296 297

Changes in the function and morphology mitochondria 
result in decreased ATP production, increased ROS levels, 
and reduced electron transport chain activity. Mitophagy, as 
a selective autophagy to eliminate impaired mitochondria, 
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plays an important protective role against inflammation 
and necroptosis that are fundamental pathological changes 
in asthma and lung injury. Overall, mitophagy can influ-
ence several pathological features of lung diseases such as 
asthma, and recognizing the molecules and genes involved 
in this process can provide novel therapeutic targets for 
treating asthma.298–300

CONCLUDING REMARKS
Normally, mitochondria contribute to cellular metabolism 
beyond production of energy. Functionally and structurally 
disturbed mitochondria have important roles in asthma 
pathophysiology, suggesting them as interesting therapeutic 
targets that have already been embraced in pulmonary 
medicine. Mitochondrial defects have been recognized in 
different cells and a variety of chronic respiratory diseases. 
Therefore, modulating mitochondrial function via agents 
that selectively regulate mitochondrial biogenesis and repair 
mitochondrial dysfunction can prevent lung remodeling in 
asthmatic patients. Mitochondrial defects may facilitate 
lung remodeling and fibrosis and promote airway cells; 
apoptosis. Further studies are required to understand the 
potential therapeutic role of modulating mitochondrial 
signaling pathways via mitochondria-targeting agents in 
asthma.

Asthma is an extremely heterogeneous syndrome engaging 
a variety of cellular mechanisms and molecular endotypes. 
However, we should focus on a number of specific and most 
important mechanisms to design effective therapeutics for 
the successful management and control of pathobiological 
pathways in asthmatic patients. Studies suggest a novel 
mitochondria-based framework (intercalated with immune/
inflammatory processes) for developing specific anti-asthma 
medications to target the molecular signaling pathways 
of this organelle. The present review sheds light on the 
important role of mitochondria in asthma pathophysiology 
and presents novel insights into the current knowledge in 
this field.
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