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ABSTRACT
The availability of antiretroviral therapy (ART) has 
increased the life expectancy of people with HIV 
(PWH) and reduced the incidence of AIDS-associated 
malignancies, yet PWH have a significantly increased 
incidence of malignancy and less favorable outcomes 
of cancer treatment compared with the general 
population.
Immunotherapy has revolutionized cancer therapy, 
becoming the standard of care for various 
malignancy treatments. However, PWH are an 
underserved population with limited access to 
clinical trials and cancer treatment.
This review of the available evidence on different 
classes of cancer immunotherapy in PWH is 
mostly based on case reports, case series, but few 
prospective studies and clinical trials due to the 
exclusion of PWH from most oncologic clinical trials. 
The results of the available evidence support the 
safety of immunotherapy in PWH. Immunotherapy 
has similar effectiveness in PWH, an acceptable 
toxicity profile, and has no clinically significant 
impact on HIV viral load and CD4-T cell count. 
In addition, there is no reported change in the 
incidence of opportunistic infections and other 
complications for PWH with well-controlled viremia.
This review aims to briefly summarize the current 
state of immunotherapy in cancer, guide clinicians in 
the management of immunotherapy in cancer PWH, 
and encourage the inclusion of PWH in clinical trials 
of cancer immunotherapy.

INTRODUCTION
Multiple immune-based cancer therapies have 
been approved for the treatment of malignancy 
and have resulted in higher and more durable 
response rates with improved survival.1–4 More-
over, cancer immunotherapies have a more 
acceptable toxicity profile when compared with 
traditional cytotoxic therapy, with fewer drug–
drug interactions.5 Currently available immuno-
therapy treatment is divided into five categories: 
cellular immunotherapy, immunomodulators, 
targeted antibodies, oncolytic virus therapy, 
and therapeutic cancer vaccines5 6 (table  1). 
With a better understanding of the cancer 
tumor microenvironment and the advancement 
of bioengineering technology, immunotherapy 
continues to expand, and new potential targets 
are being developed. Cancer immunotherapy is 
anticipated to be used in an increasing number 
of patients with cancer.7

The introduction of antiretroviral therapy 
(ART) has dramatically improved the outcomes 
of people with HIV (PWH) and has reduced 
the incidence of AIDS-associated malignancies.8 
However, cancer remains a major cause of death 
in this population. PWH are at higher risk of 
malignancy compared with the general popula-
tion.9 10 Melanoma, Kaposi sarcoma (KS), non-
Hodgkin’s lymphoma (NHL), cervical cancer, 
and other viral infection-related malignancies 
such as malignancies related to human papil-
lomavirus, Epstein-Barr virus, and hepatitis B 
and C viruses are significantly more common in 
patients with HIV.11–13 Healthcare disparities,2 
and lack of knowledge of the safety and efficacy 
of cancer immunotherapy among PWH, limit 
access to treatment on this population at risk. 
Despite the recommendation from the Amer-
ican Society of Clinical Oncology supporting 
the inclusion of PWH in cancer clinical trials,14 a 
recent study found that 72.9% of recent cancer 
immunotherapy trials specifically exclude 
PWH.15 The data on the use of immunotherapy 
in PWH diagnosed with cancer are scarce. We 
aim to review the available evidence on the 
safety and effectiveness of the different classes 
of immunotherapy, including immunomodula-
tors, cellular-based immunotherapy, therapeutic 
cancer vaccines, and targeted antibodies, in 
treating PWH and cancer. We will discuss only 
medications that have been approved by the 
US Food and Drug Administration (FDA) for 
cancer treatment.

METHODOLOGY
We systematically searched PubMed for arti-
cles on cancer immunotherapy treatment for 
PWH, using the following keywords: HIV, 
AIDS, immunotherapy, checkpoint inhibitors, 
chimeric antigen receptor (CAR)-T cell, mono-
clonal antibodies (MoAbs). We included any 
article type. We initially identified 8230 publi-
cations. We limited the search to the English 
language, human studies, cancer, and to a period 
between September 6, 2011 and September 
6, 2021. The search resulted in 651 articles 
that were screened by 2 investigators (DD and 
SAK) for relevancy. We excluded duplicates, 
studies focusing on immunotherapy for HIV 
treatment, management of HIV reservoir, and 
context of HIV vaccine development. We also 
reviewed the reference lists of the retrieved 
publications for additional correlating studies. 
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References identified were imported into EndNote (Clari-
vate Analytics).

DISCUSSION
Immunomodulators
Immune checkpoint inhibitors
T-cell activation, proliferation, and differentiation are 
complex and are regulated by multiple levels of control. 
Inhibitory receptors expressed on T cells, called immune 
checkpoints, aim at regulating the immune system by 
preventing the activation of self-reactive T cells and autoim-
munity. These checkpoints play a significant role in immuno-
oncology.16 Cancer cells evade immunosurveillance by 
stimulating these checkpoint pathways and subsequently 

suppressing the T cells and natural killer (NK) cells.17 Simi-
larly, HIV infection persists by evading immune recognition 
through establishing a latent infection and increased expres-
sion of checkpoints on CD4 and CD8 T cells.18

The most established cancer therapies targeting the 
checkpoint pathways either block cytotoxic T-lymphocyte 
antigen-4 (CTLA-4), programmed cell death-1 (PD-1), or 
its complementary PD-ligand 1.19 Blocking these immune 
checkpoints prevents T-cell inhibition, resulting in the acti-
vation and proliferation of effector T cells which enhances 
the anti-tumor immune response but also leads to potential 
immune-related adverse events (AEs) of variable severity.20 21

Initially, the US FDA approved immune checkpoint inhib-
itors (ICIs) for the treatment of melanoma. Since then, their 

Table 1  Cancer immunotherapy classes and approved FDA medications
Cancer immunotherapy types Subtypes Specific active cells/targets FDA-approved medications

Immunomodulators Checkpoint inhibitors PD-1/PD-L1 inhibitors 	► Atezolizumab
	► Avelumab
	► Cemiplimab
	► Dostarlimab
	► Durvalumab
	► Nivolumab
	► Pembrolizumab

CTLA-4 inhibitor 	► Ipilimumab

Cytokines Interferons and interleukins (ILs) 	► IL-2 aldesleukin
	► Interferon alpha-2a
	► Interferon alpha-2b
	► Peginterferon alpha-2b

Cellular immunotherapy, also known as 
adoptive cell therapy

CAR-T cell therapy Anti-CD19 	► Axicabtagene ciloleucel
	► Brexucabtagene autoleucel
	► Lisocabtagene maraleucel
	► Tisagenlecleucel

B-cell maturation antigen (BCMA) 	► Idecabtagene vicleucel

Therapeutic cancer vaccines  �  T helper stimulator oncolytic viruses 	► BCG

Dendritic cells 	► Sipuleucel-T

Targeted antibodies  � Monoclonal antibodies CD52
VEGF/VEGFR
EGFR
CD38
RANKL
GD2
SLAMF7
CD38
CCR4
EGFR
CD20
CD20
PDGFRα
EGFR
HER2
VEGF/VEGFR2
CD20
CD19
HER2

	► Alemtuzumab
	► Bevacizumab
	► Cetuximab
	► Daratumumab
	► Denosumab
	► Dinutuximab
	► Elotuzumab
	► Isatuximab
	► Mogamulizumab
	► Necitumumab
	► Obinutuzumab
	► Ofatumumab
	► Olaratumumab
	► Panitumumab
	► Pertuzumab
	► Ramucirumab
	► Rituximab
	► Tafasitamab
	► Trastuzumab

Antibody–drug conjugates BCMA
CD30
Nectin-4
CD33
CD20
CD22
CD22
CD79b
TROP-2

	► Belantamab mafodotin-blmf
	► Brentuximab vedotin
	► Enfortumab vedotin
	► Gemtuzumab ozogamicin
	► Ibritumomab tiuxetan
	► Inotuzumab ozogamicin
	► Moxetumomab pasudotox
	► Polatuzumab vedotin
	► Sacituzumab govitecan-hziy

Bispecific antibodies CD19 and CD3 	► Blinatumomab
	► Amivantamab

Oncolytic virus therapy  �   �  	► Talimogene laherparepvec

CAR-T, chimeric antigen receptor T cells; CCR4, C-C chemokine receptor 4; CTLA-4, cytotoxic T-lymphocyte antigen-4; EGFR, epidermal growth factor receptor; FDA, Food and Drug Administration; GD2, 
glycolipid; HER, human epidermal growth factor receptor; PD-1, programmed cell death-1; PDGFRα, platelet-derived growth factor receptor α; PD-L1, PD-ligand 1; RANKL, receptor activator of nuclear 
factor kappa-Β ligand; SLAMF7, signaling lymphocytic activation molecule family member 7; TROP2, a transmembrane glycoprotein encoded by the Tacstd2 gene; VEGF/VEGFR, vascular endothelial 
growth factor and its receptor.
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usage has extended to other malignancies. Clinical data have 
demonstrated that ICIs have a favorable toxicity profile and 
potent activity on several malignancies.21 PWH are histor-
ically excluded from clinical trials for cancer treatment with 
ICI due to concerns of tolerance, efficacy, and direct effect on 
HIV replication. However, PWH might potentially attain addi-
tional benefits from ICI therapy, in addition to activity against 
malignancy. For many years, the use of immunotherapy has 
been investigated as a curative strategy for HIV. ICI showed 
promising in-vitro results that are undergoing study in PWH.19 
The first clinical trial comparing the effect of nivolumab versus 
nivolumab and ipilimumab demonstrated that combination 
therapy, not monotherapy, induced a small HIV latency-
reversing effect warranting additional investigation.18

There have been many case reports and case series 
published about PWH who received ICI for cancer treat-
ment.17 22–38 A systematic review39 of PWH with advanced 
cancer treated with ICI, conducted in April 2018, identified 
73 patients. The majority were male (90%) and received 
anti-PD-1 inhibitors, nivolumab (40%) and pembrolizumab 
(35%), and an unspecified anti-PD-1 (10%). The rest of the 
patients received either a CTLA-4 inhibitor, ipilimumab 
(8%), or combination ipilimumab with anti-PD-1 (7%). 
Cancer types were non-small cell lung carcinoma (34%), 
melanoma (22%), and KS (12%), anal cancer (7%), head 
and neck cancer (6%), and other (20%). AEs were similar 

to patients without HIV infection. Combination therapy of 
anti-PD-1 and anti-CTLA-4 was more likely to be associated 
with grade 3 or higher immune-related AEs. The overall 
response rate was consistent with trials of patients without 
HIV. Many of these patients did not have baseline HIV viral 
load or CD4 reported. However, among patients with HIV 
viral load and CD4 cell counts available before and after ICI 
therapy, there was no evidence of negative impact on viral 
suppression or CD4 cell counts.39

A more recent systematic review19 identified 176 PWH 
who received ICI as cancer therapy (83%) or as HIV-targeted 
therapy (17%). The review included pooled data from 19 case 
reports, 9 case series, and 3 clinical trials. Non-severe AEs 
were reported in 49% of the patients, while severe AEs were 
reported in 12%, comparable with the incidence of severe AEs 
reported from patients without HIV (13%–14%). Severe AEs 
included pneumonitis, enterocolitis, autoimmune hepatitis, 
skin eruption, nephritis, neutropenia, and lymphopenia. One 
patient developed neurosyphilis soon after treatment with 
nivolumab and responded well to treatment. One patient 
had KS-lymphoproliferative disease and died. There was no 
immune reconstitution inflammatory syndrome noted in any 
of these reports. In addition, there was no significant impact 
on HIV viral load or CD4 cell counts.19

In table 2, we summarize 3 clinical trials and 1 prospec-
tive observational study on PWH treated with ICI for cancer 

Table 2  Clinical trials and prospective study on patients with HIV treated with immune checkpoint inhibitors for cancer therapy

Study
Patient 
characteristics

Baseline HIV 
status Cancer type Treatment

Primary 
outcome for 
evaluable 
patients

Non-immune-
related AE

Immune-related 
AE

Effect on HIV 
and CD4

Scully et al36 
Prospective 
observational
2018

N=3
All men

 �  2 H&N SCC
1 skin cancer

2 nivolumab
1 pembrolizumab

1 CR
2 SD

1/3 grade 1, 2
0 grade 3, 4

Possible 
autoimmune 
dermatitis

No significant 
change in HIV 
VL or CD4

Uldrick et al40

Open-label
phase 1 clinical trial
non-randomized
2019
USA

N=30
93% men
Median age 57 y

On ART
HIV VL <200
CD4 >100

Advanced 
cancer
6 KS
5 NHL
19 non-AIDS-
defining 
cancers

Pembrolizumab 
for up to 35 doses

1 CR
2 PR
17 SD
8 PD

73% grade 1, 2
20% grade 3, 4
4 anemia
1 increase ALT/AST
1 soft tissue infection
1 KS-associated B-cell 
lymphoproliferative 
disease and death

6 hypothyroidism
3 pneumonitis
2 rash

No significant 
effect on HIV 
VL or CD4

Lavole et al41

Open-label
phase 2 clinical trial
non-randomized
2021
France

N=16
88% men
Median age 58 y

On ART
HIV VL <200
CD4 count any

Advanced 
NSCLC

Nivolumab
Median duration 
3.5 mo
Median follow-up 
23.6 mo

Disease 
control rate 
62.5%
2 PR
8 SD
5 PD

75% grade 1, 2
6% grade 3, 4
1 pruritus, 
pemphigoid, and 
onycholysis

None No significant 
effect on VL or 
CD4

Gonzalez-Cao 
et al42

Open-label
phase 2 clinical trial
non-randomized
2020
Spain

N=20
80% men
Median age 54 y

On ART
HIV VL UD
CD4 count any

Advanced 
solid tumor
14 NSCLC
2 melanoma
2 anal cancer
1 SCLC
1 bladder 
cancer

Durvalumab
Median duration 
4 mo
Median follow-up 
12.7 mo

Disease 
control rate 
50%
4 PR
5 SD
7 PD
(4 early 
deaths not 
drug related, 
secondary to 
rapid PD

0 grade 3, 4 None No significant 
effect on VL or 
CD4

AE, adverse event; ALT, Alanine transaminase; ART, antiretroviral therapy; AST, Aspartate aminotransferase; CR, complete response; H&N, head and neck; KS, Kaposi 
sarcoma; NHL, non-Hodgkin's lymphoma; NSCLC, non-small cell lung carcinoma; PD, progressive disease; PR, partial response; SCC, squamous cell carcinoma; SD, 
stable disease; UD, undetectable; VL, viral load in RNA copies/µL.
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therapy.36 40–42 In most case reports and studies, at the time 
of ICI initiation, patients were on ART and had controlled 
HIV, with a range of CD4 cell counts. Several clinical trials 
studying the use of ICI, alone or in combination, in PWH 
with advanced cancer are underway.43

Cytokines
Cytokines are proteins that act to facilitate intercellular 
inflammatory interactions.44 45 Cytokines as cancer mono-
therapy that failed to prove their efficacy through clinical 
trials, but appear to enhance the activity of checkpoint 
inhibitors.46 Two cytokines were approved by FDA as mono-
therapy, interleukin (IL)-2 and interferon-alpha (IFN-α).47 
Another cytokine, IL-12 showed a potent anti-cancer effect 
in preclinical models, but use has been limited by systemic 
toxicities. Localized treatment to minimize systemic expo-
sure is undergoing study in clinical trials.48

IL-2 is secreted by activated T-helper cells to stimulate 
proliferation of B and T cells44 49 and is a major trigger 
in activating the proliferation of NK cells, and B and T 
lymphocytes.50 IL-2 was approved for the treatment of 
metastatic renal cell carcinoma and metastatic melanoma. 
The overall response rate ranged from 15% to 20%.51 The 
use of IL-2 in PWH was studied starting more than 20 years 
ago as an HIV treatment and yielded no clinical benefit 
despite leading to increases in CD4 cell counts.52 53

Subcutaneous IL-12 showed potent activity on AIDS-
related KS. In a phase 1 study on 32 PWH and progres-
sive KS despite ART, the observed overall response rate was 
61%.54 In a subsequent study, the combination of subcuta-
neous IL-12 with doxorubicin resulted in substantial tumor 
response. The primary AEs noted were influenza-like symp-
toms, neutropenia, anemia, elevated transaminases, and 
bilirubin.55

IFN also has immunomodulatory effects against tumors.56 
IFN-α was found to have pro-apoptotic, anti-proliferative 
activities, and antiangiogenic characteristics.45 One of the 
first cytokine immunotherapies used in PWH is IFN-α for 
the treatment of HIV.57 The response rate for treatment of 
HIV-associated KS with IFN-α was around 20%–40%.58–62 
IFN-α was approved by the FDA for the treatment of AIDS-
related KS in 1988.63 64 However, IFN-α is rarely used at 
present, especially as monotherapy, due to associated AEs, 
decreased incidence of KS, and the emergence of new 
agents.64

Cellular immunotherapy, also known as adoptive cell 
therapy
CAR-T cell therapy
This type of therapy uses harvested human T cells from 
peripheral blood and genetically modifies these cells to 
express CARs. These cells are multiplied, a process that takes 
2–3 weeks. CAR-T cells are then reinfused to the patient 
to bind to specific antigens presented by the cancer cells 
and produce a potent anti-tumor effect.65 Current CAR-T 
cell therapies have two cancer targets, the B-cell marker 
(CD19), typically expressed by leukemia, lymphoma, and 
myeloma cells, or the B-cell maturation antigen (BCMA), 
typically expressed by myeloma cells. Clinical trials of 
CAR-T cell immunotherapy have shown positive results.66 
The first CAR-T cell therapy was approved in 2017. The 
FDA has now approved 4 anti-CD19 CAR-T cells for the 

treatment of relapsed/refractory (R/R) acute lymphoblastic 
leukemia (ALL) in young adults up to age 25 years and 
specific subsets of B-cell lymphomas and 1 anti-BCMA 
CAR-T cell for refractory multiple myeloma (table 1).67

However, CAR-T cell therapies have significant side 
effects that could be life-threatening. The US FDA provides 
boxed warnings about the risk of cytokine release syndrome 
(CRS) and immune cell-associated neurotoxicity syndrome 
(ICANS). All CAR-T cell therapies are approved for use 
under a risk evaluation and mitigation strategy program.68

The use of cellular immunotherapy as a strategy to target 
and treat HIV has been studied in the past,69 but the use of 
CAR-T cell therapy to treat cancer in PWH has not been 
studied.70 The safety and efficacy of CAR-T cell to treat 
hematological malignancies might be different in patients 
with or without HIV. First, CAR-T cell therapy in PWH 
will be derived from HIV-infected T cells. PWH might 
have HIV-mediated T-cell depletion. There are concerns 
for interaction between ART and CAR-T cell therapy and 
a higher risk of infectious and immune-mediated complica-
tions. In addition, baseline cytokine levels could be different 
in PWH compared with patients without HIV, which could 
affect the incidence and the severity of CRS and neurolog-
ical complications, as well as the expansion and persistence 
of CAR-T cell therapy.71

The FDA does not exclude PWH for the approved CAR-T 
cell therapies, yet in a small international survey sent in 
2019 to physicians with experience in administering CAR-T 
cell therapies, there was a general agreement that patients 
with chronic viral infections, including HIV, should not be 
eligible for treatment.72

A total of 4 PWH were treated with anti-CD19 CAR-T 
cells (axicabtagene ciloleucel) for R/R diffuse large B-cell 
lymphoma (DLBCL). In 1 report, 2 PWH underwent 
successful autologous CAR-T cell therapy along with ART 
that resulted in long-term remission of the lymphoma. One 
patient had a CD4 cell count of 52 cells/mm3 at the time 
of apheresis and the other patient had a CD4 cell count 
of 127 cells/mm3. The side effects were consistent with 
expected CAR-T cell therapy in patients without HIV and 
were reversible with standard therapy.73 A case series of 10 
patients who received CAR-T cell therapy for R/R DLBCL 
included 1 PWH on ART. The patient had complete remis-
sion at 3 months and had no significant toxicities.74 Allred et 
al reported a patient with well-controlled HIV on ART who 
underwent CAR-T cell for R/R DLBCL, had grade I CRS 
and grade II ICANS that resolved with standard protocol; 
however, at 2 months after CAR-T cell therapy, the patient 
had evidence of disease progression (table 3).75

These case reports have established that CAR-T cell 
therapy among PWH is possible, even in the context of HIV-
associated T-cell depletion, and suggest that it has a compa-
rable safety profile and effectiveness with those without 
HIV infection. Allred et al suggest several steps to optimize 
CAR-T cell therapy for PWH: engage a multidisciplinary 
team, achieve HIV control, review and change ART to mini-
mize drug interactions and overlapping toxicities, screen 
for and treat opportunistic infections, closely monitor HIV 
control every 3 months for 1 year after CAR-T cell therapy, 
assess for immune reconstitution, and administer infection 
prophylaxis for pneumocystis pneumonia, herpes simplex 
virus (HSV), varicella-zoster virus, and mold.75
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Therapeutic cancer vaccines
Multiple efforts are underway to develop vaccines against 
HIV, but the following section will focus on the use of 
vaccines for cancer treatment in PWH.

Bacillus Calmette-Guérin
BCG is a live-attenuated strain of Mycobacterium bovis.76 
Intravesical BCG is indicated as adjunctive therapy for non-
muscle-invasive bladder cancer (NMIBC) at high risk of 
disease progression.77 It has been the gold standard and the 
most effective treatment for NMIBC in the last 40 years.78 
The BCG’s mechanism of action is not fully understood. 
Intravesical BCG has a direct effect on tumor growth and 
an indirect effect. BCG triggers local inflammation and 
immune response and induces CD4 T cells and macro-
phages to improve recognition and destruction of tumor 
cells.79

Transmucosal absorption of intravesical BCG is limited. 
However, the risk of systemic BCG infection might be 
increased with mucosal damage, old age, and immunosup-
pression. Data on immunocompromised patients receiving 
BCG treatment are limited to draw any conclusions.80–82

PWH are theoretically at high risk of developing systemic 
infections.83 84 The benefit of prophylactic anti-tuberculous 
agents such as isoniazid is not established.85 86 In addition, 
BCG immunotherapy might not be effective in patients 
with impaired cell-mediated immune response.76 There are 
only 2 case reports of PWH who received BCG intravesical 
therapy for bladder cancer. In the first report, 2 patients 
developed a culture-proven pulmonary infection after treat-
ment with BCG, 1 of them HIV positive.87 In a case series of 

10 PWH and bladder cancer, 1 patient received intravesical 
BCG without infectious complications.76 Given the critical 
shortage of BCG therapy, potential systemic infection, and 
lack of clear efficacy in this group population, alternative 
treatment should be considered in PWH and NMIBC.

Sipuleucel-T
Sipuleucel-T uses stimulated dendritic cells (DCs) to produce 
an anti-tumor response. DC precursors are harvested from 
the patient’s peripheral blood, primed ex-vivo to target pros-
tatic acid phosphatase, and then reinfused.88 89 Sipuleucel-T 
was the first therapeutic cancer vaccine to be approved by 
the FDA in 2010 for the treatment of asymptomatic patients 
with metastatic castration-resistant prostate cancer.90

AEs were mostly mild and resolved few days after treat-
ment.91 However, sipuleucel-T is not commonly used, 
secondary to controversies in regard to its effectiveness, 
high cost, and availability of other treatment options.92 
There are no available clinical data about the safety and effi-
cacy of sipuleucel-T in PWH since they were excluded from 
clinical trials.93 There are also no available case reports.

Oncolytic virus therapy
Oncolytic virus therapy uses genetically engineered viruses 
to target malignant cells. These viruses are modified by 
deleting and inserting new genes to decrease their ability 
to infect healthy cells and to enhance their tumor-specific 
tropism. After infection, oncolytic viruses cause lysis of 
tumor cells leading to the release and recognition of cancer 

Table 3  Characteristics and outcomes of patients with HIV who received CAR-T cell therapy (ref)

Patient Cancer type HIV status Treatment
Complications following 
CAR-T cell therapy Outcome

#1 EBV‐negative 
DLBCL

Pre-CAR-T cells: HIV VL: 
1,760,000 copies/mL; CD4 
count: 108 cells/mm3

Post-CAR-T cells therapy: 
undetectable HIV VL and a 
CD4 count of 133 cells/mm

3 cycles of dose‐adjusted EPOCH‐R 
axicabtagene ciloleucel

CRS and neurologic toxicities Follow-up imaging up to 
1 y after CAR-T therapy 
showed complete 
remission

#2 EBV‐positive 
DLBCL

Pre-CAR T therapy: HIV VL 
undetectable
CD4: 127 cells/mm
Post-CAR T therapy: disease 
activity remained under 
control

	► EPOCH‐R
	► Rituximab plus lenalidomide
	► Lymphodepleting fludarabine at a dose 

of 20 mg/m2 (dose reduced for HIV 
and cytopenia)—cyclophosphamide 
axicabtagene ciloleucel

No documented CRS or 
neurologic toxicities

Follow-up CT and PET 
scan in 4 wk post CAR-T 
therapy showed complete 
remission

# 3 DLBCL
EBV status 
unknown

Pre-CAR-T therapy:
on ART, HIV VL undetectable, 
CD4 127
Post-CAR-T, last labs available 
showed HIV VL 683,817 and 
CD4 46 ~5 mo post-therapy

Fludarabine and cyclophosphamide prior to 
CAR-T cell therapy Axicabtagene ciloleucel

Neutropenia (absolute 
neutrophil count of <500 cells/
µL

Complete remission at 
3 mo

# 4 R/R DLBCL
EBV status 
unknown

Pre-CAR-T therapy: on ART, 
HIV VL undetectable, CD4 378

1 cycle of ifosfamide, carboplatin and 
etoposide
Subsequent therapy with fludarabine and 
cyclophosphamide
Followed by axicabtagene infusion and 
concomitant ART

Grade I CRS and grade II ICANS 
that resolved with standard 
protocol

At 2 mo after CAR-T 
cell therapy, patient 
had evidence of disease 
progression

ART, antiretroviral therapy; CAR-T, chimeric antigen receptor T cells; CRS, cytokine release syndrome; DLBCL, diffuse large B-cell lymphoma; EBV, Epstein-Barr virus; 
EPOCH‐R, etoposide phosphate, prednisone, vincristine sulfate (oncovin), cyclophosphamide, and doxorubicin hydrochloride (hydroxydaunorubicin) rituximab; ICANS, 
immune cell-associated neurotoxicity syndrome; PET, positron emission tomography; R/R, relapsed/refractory; VL, viral load.
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antigens and the activation of immune response overcoming 
the immune evasiveness of tumor cells.94–96

Talimogene laherparepvec is a modified HSV-1 and is the 
only currently FDA-approved oncolytic virus therapy, for 
the treatment of inoperable melanoma.97 The main chal-
lenge of oncolytic viral therapy is the poor bioavailability 
when systemically administered. To achieve adequate drug 
delivery and clinical effectiveness, the treatment is adminis-
tered by direct intratumoral injection. This led to improve-
ment of durable response rates and even regression in 
distant non-injected tumor sites without significant serious 
AEs.96 98–100

Potential safety concerns include viral mutation with the 
potential ability for off-target infection, unexpected toxic-
ities, virus shedding, and transmissibility of the virus.101 
Modified HSV oncolytic virus retained the thymidine 
kinase gene, a target for ganciclovir therapy that could 
potentially control an infection.96 Clinical trials for onco-
lytic virotherapy have excluded patients who are immu-
nocompromised. No clinical data are available on PWH 
receiving oncolytic virus therapy.

Targeted antibodies
The availability of MoAbs for cancer treatment has signifi-
cantly expanded the options for cancer treatment while 
minimizing drug–drug interactions. Targeted antibody ther-
apies include MoAbs, antibody–drug conjugates, and bispe-
cific antibodies.

Monoclonal antibodies
MoAbs are proteins developed to target specific cancer 
antigens. After binding to cancer cells, antibodies disrupt 
different pathways of cancer cell activity. The FDA 
approved the first MoAb rituximab for cancer therapy in 
1997, since then many more have been approved for cancer 
treatment.102 103 MoAbs are either used as monotherapy or 
more likely in combination with chemotherapy.104

In PWH, the use of anti-CD20 MoAb, rituximab, has 
been the most studied in the management of HIV-associated 
lymphomas.105 106 The only randomized controlled trial 
comparing the addition of rituximab with cyclophospha-
mide, doxorubicin, vincristine, and prednisone (R-CHOP) 
versus CHOP in 150 patients with HIV-associated NHL 
did not show a statistically significant improvement in 
tumor response rate and was associated with an increase in 
infection-related deaths, 60% of these deaths occurred in 
patients with CD4 cell count <50 cells/mm3.107 Barta et al 
analyzed pooled individual data from 19 prospective clin-
ical trials, including 1546 PWH with NHL; 84% were male, 
the median age was 40 years, 69% had DLBCL, 26% had 
Burkitt lymphoma/Burkitt-like lymphoma, or other (6%). 
Patients received various chemotherapy regimens, with 
CHOP the most used regimen (41%). Rituximab was added 
in 35% of the cases. In contrast to the previously described 
randomized controlled trial comparing R-CHOP with 
CHOP, these data have shown that the addition of ritux-
imab improved overall survival, progression-free survival, 
and increased complete response rate by almost 3-fold in 
patients, notably in patients with CD4 cell count >50 cells/
mm3.108 Rituximab-based therapy has improved the prog-
nosis of HIV-associated multicentric Castleman disease 

(MCD) as well.109 A retrospective analysis of 113 patients 
with HIV-MCD suggested that rituximab therapy lowered 
the risk of developing NHL by 11-fold.110

Bevacizumab is a MoAb targeting the vascular endothelial 
growth factor and its receptor. Main AEs include cardio-
vascular, such as stroke and myocardial infarction, as well 
as non-cardiovascular, including proteinuria, hypertension, 
bleeding, and gastrointestinal perforation. A phase II clin-
ical trial investigated the use of systemic bevacizumab in 17 
PWH-associated KS. It was well tolerated, with an overall 
response rate of 31%.111 A subsequent study by the same 
group investigated toxicity and efficacy of combination 
liposomal doxorubicin with bevacizumab for PWH and KS, 
who failed to respond to ART or had advanced KS. The 
overall response rate was 56%, suggesting that combination 
therapy might result in improved response, compared with 
bevacizumab monotherapy. However, this study included 2 
patients out of 16 who were HIV negative.112 In an open-
label phase 2 study, 14 PWH with KS in the upper airway 
were randomized 1:1 to ART alone versus ART and intral-
esional bevacizumab. No difference in tumor response was 
observed between these two groups.113

The use of other MoAbs in PWH and different types of 
cancers has been described in several case reports: beva-
cizumab in 2 patients with colorectal cancer (CRC)114 115 
and 1 patient with metastatic hepatocellular carcinoma116; 
cetuximab in metastatic CRC117; alemtuzumab in a patient 
with Sezary syndrome118; and the successful treatment of 
primary effusion lymphoma with daratumumab.119 The 
treatment was well tolerated in these cases. For trastuzumab 
adjuvant chemotherapy, 2 PWH with human epidermal 
growth factor receptor 2-positive breast cancer were unable 
to receive the intended regimen due to cardiotoxicity, 1 
possibly attributable to trastuzumab.120

Antibody–drug conjugates
Antibody–drug conjugates are MoAbs conjugated with a 
highly potent cytotoxic drug that will be directly delivered 
to cancerous cells.121–124 Many antibody–drug conjugates 
are now approved for the treatment of hematologic and 
solid malignancies.

Brentuximab vedotin, an antibody–drug conjugate, in 
combination with doxorubicin, vinblastine, and dacarba-
zine, was studied in 6 patients with HIV-associated HL. All 
patients showed a complete response. It was well tolerated 
with minimal complications.125

Bispecific antibodies
Bispecific antibodies (BsAbs) have 2 different antigen-
binding sites, 1 directed to tumor-specific antigen and the 
other targeting immune cells to activate the anti-cancer 
immune response.126 The advantages of BsAb over MoAb 
include higher binding specificity, enhanced cytotoxic effect 
by bridging immune cells to the cancer cells, and lower 
risk of resistance by targeting 2 different receptors on the 
same tumor cell.127 Blinatumomab is an FDA-approved 
BsAb, bispecific T-cell engager for treatment of R/R B-lin-
eage ALL. Blinatumomab binds the CD19 on B-lymphocyte 
cancer cells to the CD3 on cytotoxic T-cell lymphocytes, 
activating and directing T lymphocytes to destroy cancer 
cells.127 In May 2021, the FDA granted accelerated approval 
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to amivantamab, the second BsAb for adult patients with 
metastatic non-small lung cancer based on the overall 
response rate of 40% and median response duration of 
11.1 months.128 Unfortunately, there are no available clin-
ical data, including case reports, regarding the treatment 
of patients with HIV with these agents, although a recent 
trial with amivantamab for adenoid cystic adenocarcinoma 
allows patients with well-controlled HIV to be included.

CONCLUSION
ART has improved clinical outcomes, reduced the inci-
dence of AIDS-associated malignancies, and increased life 
expectancy for PWH, yet PWH continue to have a signifi-
cantly increased incidence of malignancy with less favorable 
outcomes and decreased access to clinical trials and cancer 
treatment, compared with the general population. This 
review of the available literature on cancer immunotherapy 
in PWH suggests that using immunotherapy is likely to 
be feasible and effective, similar to its effects in patients 
without HIV infection, and without unexpected toxicities.37 
These results suggest that barriers need to be addressed and 
efforts implemented to include this underserved popula-
tion in future clinical trials, so that PWH may also benefit 
from the therapeutic advances in cancer therapy. Bender 
Ignacio et al question the use of CD4 absolute cell count 
as a criterion for clinical trial eligibility since CD4 lymph-
openia is partly related to the immunosuppressive effects 
of cancer. Moreover, the higher mortality associated with a 
chemotherapy-related decline in CD4 cell counts is partic-
ularly why immunotherapy should be introduced early in 
HIV-associated cancer to avoid additional immunosuppres-
sion.129 Criteria for PWH that are well controlled should 
be similar to non-HIV-infected patients, avoiding the exclu-
sion of those patients with well-controlled HIV and similar 
comorbidities to other patients undergoing evaluation for 
cancer treatment or inclusion in clinical trials.
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