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AbstrAct
Clear health benefits are associated with intensive 
glucose control in type 1 diabetes mellitus (T1DM). 
However, maintaining near-normal glycemia remains 
an elusive goal for many patients, in large part owing 
to the risk of severe hypoglycemia. In fact, recurrent 
episodes of hypoglycemia lead to ’hypoglycemia-
associated autonomic failure’ (HAAF), characterized 
by defective counter-regulatory responses to 
hypoglycemia. Extensive studies to understand the 
mechanisms underlying HAAF have revealed multiple 
potential etiologies, suggesting various approaches 
to prevent the development of HAAF. In this review, 
we present an overview of the literature focused 
on pharmacological approaches that may prevent 
the development of HAAF. The purported underlying 
mechanisms of HAAF include: 1) central mechanisms 
(opioid receptors, ATP-sensitive K+(KATP) channels, 
adrenergic receptors, serotonin selective receptor 
inhibitors, γ-aminobuyric acid receptors, N-methyl 
D-aspartate receptors); 2) hormones (cortisol, 
estrogen, dehydroepiandrosterone (DHEA) or DHEA 
sulfate, glucagon-like peptide-1) and 3) nutrients 
(fructose, free fatty acids, ketones), all of which 
have been studied vis-à-vis their ability to impact 
the development of HAAF. A careful review of the 
current literature reveals many promising therapeutic 
approaches to treat or reduce this important 
limitation to optimal glycemic control.

IntroductIon
Although intensive glucose control in diabetes is 
associated with clear health benefits,1 maintaining 
near-normal glycemia remains an elusive goal 
for many patients with type 1 diabetes mellitus 
(T1DM), in large part owing to the risk of severe 
hypoglycemia.2 Hypoglycemia contributes to 
significant morbidity and mortality in T1DM, as 
it is estimated that 6%–10% of deaths in patients 
with T1DM may be attributed to hypoglycemia.3 
Each year, hypoglycemia accounts for an esti-
mated 1 00 000 emergency room visits and 30 000 
hospital admissions, with each event taking an 
enormous economic toll on the healthcare system4 
as well as on patients’ productivity and well-being.

Patients with T1DM as well as advanced type 
2 diabetes mellitus (T2DM) are susceptible to 
hypoglycemia because they require exogenous 
insulin treatment, and due to acquired defec-
tive counter-regulatory responses, including 

deficient glucagon release. Additionally, their 
vulnerability to hypoglycemia is worsened by 
a phenomenon known as ‘hypoglycemia-asso-
ciated autonomic failure’ (HAAF), which is a 
blunting of sympathoadrenal and other count-
er-regulatory responses to hypoglycemia. HAAF 
tends to occur following recurrent episodes of 
hypoglycemia (eg, in patients with insulinoma5 6) 
and in patients with T1DM who observe tight 
glyemic control.7 The mortality and morbidity 
risks associated with hypoglycemia are exacer-
bated in patients with HAAF. Following one or 
more episodes of recent, antecedent hypogly-
cemia, patients may develop a blunting of the 
normal hormonal counter-regulatory responses 
to hypoglycemia (ie, HAAF)8 as well as a loss 
of symptoms, which when fully manifested 
results in hypoglycemia unawareness.7 HAAF 
and hypoglycemia unawareness together lead to 
a vicious cycle of recurrent hypoglycemia, and a 
25-fold increased risk for severe hypoglycemia.9

Understanding the mechanism(s) of reduced 
counter-regulatory responses to hypoglycemia 
requires new insights into the basic molecular, 
cellular, tissue, and whole-body pathophysi-
ology of HAAF in experimental models.7 To 
resolve this important clinical problem will 
require developing therapeutic approaches to 
enhance or normalize the pattern of counter-reg-
ulatory responses to hypoglycemia. Indeed, 
many different types of drugs, hormones, and 
nutrients have been shown to modulate count-
er-regulation by direct central nervous system 
effects. In this review, we will focus on potential 
therapeutic approaches that have been explored 
for the treatment of HAAF, a defective count-
er-regulatory response during hypoglycemia, 
in both animal models and in human subjects. 
This review will not address other approaches 
to prevention of hypoglycemia such as use of 
glucagon in closed-loop systems, continuous 
glucose monitoring and proactive insulin dose 
management, and adjustment of diet and life-
style factors such as exercise and alcohol intake.

centrAl ApproAches for modulAtIng 
hAAf
role of opioid receptors
Robust data points to a key role of the endog-
enous opioid system in the development of 
HAAF.10 Many kinds of stressors, including 
hypoglycemia and exercise, precipitate the 
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release of endogenous opioids such as β-endorphin, which 
can mediate autonomic and sympathoadrenomedullary 
responses in humans and animals.11 12 In fact, it has been 
proposed that HAAF may represent a form of stress habit-
uation to recurrent hypoglycemia,13 possibly as a defensive 
adaptation, particularly since most features of HAAF are 
reversible after a 2-week to 3-week period of scrupulous 
hypoglycemia avoidance14 or cure of insulinoma.5 6

Opioid receptor blockade with naloxone has been shown 
to amplify the counter-regulatory hormonal response to 
hypoglycemia in healthy subjects and in subjects with 
T1DM.15 During a single episode of hypoglycemia in 
normal subjects, naloxone increased endogenous glucose 
production (EGP) as well as epinephrine and cortisol 
responses to hypoglycemia as compared with placebo. 
Also, patients with well-controlled T1DM with suppressed 
hepatic and hormonal responses to insulin-induced hypo-
glycemia demonstrated greater stimulation of EGP as well 
as epinephrine, growth hormone, and cortisol release 
following treatment with naloxone.15 Acute administration 
of intravenous naloxone during two episodes of hypogly-
cemia reversed experimentally induced HAAF in non-dia-
betic subjects by restoring the defective counter-regulatory 
responses (epinephrine, norepinephrine, and glucagon 
and EGP) during subsequent episodes of hypoglycemia.16 
Additionally, naloxone infusion during antecedent hypogly-
cemic episodes reduced HAAF in subjects with T1DM, with 
improvement of the epinephrine response as well as signif-
icant improvement of EGP during a subsequent episode of 
hypoglycemia.17 In summary, these findings suggested that 
the opioid system plays a key modulatory role in hypogly-
cemia counter-regulation and could be manipulated phar-
macologically, leading to the promise of novel alternative 
therapies to ameliorate HAAF.

Intriguingly, while overnight administration of oral 
naltrexone significantly increased epinephrine responses 
to hypoglycemia in T1DM,18 administration of oral 
naltrexone twice daily for 4 weeks had no effect on hypo-
glycemic symptoms or on counter-regulatory hormone 
responses during experimental hypoglycemia in subjects 
with T1DM with impaired hypoglycemia awareness.19 This 
chronic administration of naltrexone may upregulate opiate 
binding sites and lead to heightened sensitivity to endog-
enous β-endorphins.20 This leads to intriguing questions 
about whether intermittent opioid receptor blockade might 
have therapeutic potential.

role of Atp-sensitive K+ (KATP) channels
It has been demonstrated in numerous rodent studies 
that hypothalamic KATP channels play an important role 
in sensing hypoglycemia.21 Specifically, pro-opiomelano-
cortin (POMC) neurons in the ventromedial hypothal-
amus (VMH) express a unique complement of inwardly 
rectifying potassium channels (Kir6.2) that allow them 
to respond to changes in ambient glucose concentrations. 
Diazoxide activates Kir6.2 channels in glucose-responsive 
neurons of the VMH, leading to neuronal hyperpolariza-
tion.22 McCrimmon et al studied the effect of KATP channel 
activators (diazoxide or NN414) via microinjection into 
the VMH of non-diabetic rats. Both during a single episode 
and following recurrent episodes of hypoglycemia, the rats 

showed increased counter-regulatory hormonal responses 
(epinephrine and glucagon) and decreased glucose infusion 
rate (GIR), indicative of increased EGP.21 The same group 
subsequently studied the contrasting effects of activating 
versus inhibiting KATP channels. Intravenous injection of 
NN414 increased plasma epinephrine levels and reduced 
GIR, and this effect was blocked by glibenclamide micro-
injection into the VMH, indicating that these effects of the 
KATP channel activator were centrally mediated.23 These 
findings were duplicated in both non-diabetic and diabetic 
rats during a single episode and after recurrent episodes of 
hypoglycemia.

In contrast, other studies did not report a significant 
difference in counter-regulation during a single episode 
of hypoglycemia when either diazoxide or glyburide were 
orally administered to non-diabetic human subjects.24 25 
However, patients with T1DM who received oral diazoxide 
over a 12-hour period prior to a hypoglycemic clamp had 
increased hormonal responses to hypoglycemia. Further-
more, the subjects whose hormonal responses were most 
enhanced by diazoxide had an activating E23K polymor-
phism of the KATP channel, collectively suggesting that 
activation of KATP channels improves counter-regulatory 
responses in patients with T1DM with established HAAF.26 
Intriguingly, in addition to Kir6.2 channels, other subtypes 
of POMC neurons express Kir3.1–3.4 channels that are 
complexed to the μ-opioid receptor in these cells. Indeed, 
some POMC neurons respond to both μ-opioid receptor 
activation and KATP channel activation by diazoxide, while 
others respond either to μ-opioid activation alone or to 
diazoxide alone.22 These complementary neuronal response 
patterns raise the exciting possibility that μ-opioid receptor 
antagonism together with activation of KATP channels could 
have synergistic effects in patients with HAAF. In conclu-
sion, both rat and human studies have suggested that system-
ically administered KATP channel activators work centrally 
to increase counter-regulatory responses to hypoglycemia, 
despite limited results in non-diabetic subjects.

role of adrenergic receptors
Initial seminal studies reporting elevated levels of cate-
cholamines in response to insulin-induced hypoglycemia 
in non-diabetic subjects suggested that epinephrine and 
norepinephrine play an important role in mediating normal 
counter-regulatory responses to hypoglycemia,27 and high-
lighted the importance of the adrenergic system. Admin-
istration of a β-agonist (terbutaline) has been shown to 
decrease the risk of nocturnal hypoglycemia.28 Administra-
tion of β-antagonists (eg, propranolol, metoprolol) during 
hypoglycemia slowed glucose recovery times in many 
studies.29 30 When subjects with insulin-induced hypogly-
cemia were given somatostatin together with α-antago-
nist and β-antagonist, glucose recovery was slower than 
in controls, leading to the conclusion that when glucagon 
secretion is inhibited by somatostatin, sympathetic stimu-
lation is upregulated to compensate for low plasma glucose 
levels.31 This study and others support a counter-regula-
tory role of sympathetic stimulation in glucose restoration 
during hypoglycemia, especially when glucagon secre-
tion is defective in patients with diabetes.32–35 Addition-
ally, dogs with experimentally-induced hypoglycemia had 
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reduced hepatic and renal glucose production after being 
given β-antagonists.36 Furthermore, the sensitivity of both 
β-1-receptors and β-2-receptors, measured as the dose of 
intravenous isoproterenol that increased the heart rate by 
25 beats/min, was lower in subjects with insulin-induced 
hypoglycemia.37 38 In summary, epinephrine seems to exert 
its glucose-elevating effects through both α-adrenergic and 
β-adrenergic receptor stimulation.39

However, despite the above evidence that β-antagonists 
reduce the response to an individual episode of hypogly-
cemia, there is evidence suggesting that administering 
certain β-blockers to subjects with insulin-induced hypo-
glycemia causes increased counter-regulatory hormone 
levels, such as epinephrine, growth hormone, ACTH and 
cortisol.40 Administering adrenergic antagonists during 
one episode of hypoglycemia prevented subjects from 
becoming desensitized to the effects of catecholamines 
during subsequent bouts of hypoglycemia.41 This intro-
duces an intriguing paradox, in that the use of β-antagonists 
can be detrimental to the responses to an individual episode 
of hypoglycemia yet helpful in the treatment of HAAF. 
Furthermore, data from rodent models are mixed: while 
one study in rats showed that administration of β-2-ago-
nists into the VMH caused a greater release of epinephrine 
during hypoglycemia,37 another study found that blocking 
adrenergic receptors in rats did not affect the VMH’s 
ability to sense hypoglycemia, concluding that adrenergic 
sympathetic responses may not be critical for the recogni-
tion of hypoglycemia in rats.38 In patients with T2DM with 
impaired β-cell function, C peptide levels were markedly 
reduced in response to administration of β-antagonists, 
and non-significant but elevated epinephrine and norepi-
nephrine responses were shown as compared with healthy 
control subjects.42 In conclusion, since increased epineph-
rine release during hypoglycemic stress has been shown to 
reduce acute counter-regulatory responses to subsequent 
episodes of hypoglycemia, β-blockers may play a role in 
preventing HAAF.

role of serotonin selective receptor inhibitors
Serotonin selective receptor inhibitors (SSRIs), used as 
antidepressant medications, have been studied as potential 
agents for preventing the development of HAAF. Seroto-
nergic pathways are known to modulate neuroendocrine 
responses, and serotonin neurons in the caudal hindbrain 
are sensitive to glucose. Taken together, the evidence 
suggests serotonergic pathways may play a crucial role in 
counter-regulation during hypoglycemia. Several studies 
have been reported in rodents, healthy individuals and 
patients with T1DM. Sanders et al studied 6-day or 21-day 
sertraline-treated non-diabetic rodents for their responses 
to both a single episode and recurrent episodes of hypo-
glycemia. Epinephrine and some glucagon responses to 
hypoglycemia were restored in these rodents after sertraline 
treatment for both 6 days and 21 days, with a more robust 
response seen in the 6-day treated group.43

Briscoe et al studied the effect of 6 weeks’ administration 
of fluoxetine on response to a single episode of hypogly-
cemia in healthy individuals; treated subjects demonstrated 
restored counter-regulatory hormonal responses (epineph-
rine, norepinephrine, and cortisol), muscle sympathetic 

nerve activity, and metabolic responses (endogenous 
glucose production, glycogenolysis, and lipolysis), but did 
not have restoration of hypoglycemic symptoms despite 
significantly increased heart rate and systolic blood pres-
sure.44 Similar results were shown in a study in subjects with 
T1DM. In these studies, subjects’ weight remained stable 
during both fluoxetine and placebo administration. Based 
on these data, it appears unlikely that SSRIs’ HAAF-re-
ducing effects are mediated via weight gain, although it is 
certainly possible that these effects are mediated via hyper-
glycemia as a medication side effect.44 Furthermore, addi-
tional data are accumulating regarding possible mechanisms 
for SSRIs’ enhancement of both autonomic nervous system 
and hypothalamic-pituitary-adrenal axis responses during 
hypoglycemia. For example, activation of a number of 
serotonergic receptors has been demonstrated to increase 
sympathetic nervous system outflow.45 These findings 
suggest that the etiology of SSRIs’ HAAF-reducing effects 
is likely multifactorial. Although SSRI treatment did not 
significantly improve hypoglycemic symptoms, it was able 
to restore hormonal and metabolic responses to hypogly-
cemia, suggesting that these agents may play an important 
role in the treatment of HAAF.

role of γ-aminobuyric acid receptors
Rat studies have shown that recurrent bouts of hypogly-
cemia are associated with an increase in GABAergic tone 
in the VMH, which is responsible for sensing glucose 
levels, possibly resulting in HAAF.46 47 Administering a 
γ-aminobuyric acid (GABA) agonist, alprazolam, to healthy 
adults before a hypoglycemic episode reduced adrenergic 
(epinephrine, norepinephrine) and hormonal (glucagon and 
growth hormone) activity in subsequent states of hypogly-
cemia.48 When injected with a GABA antagonist, bicucul-
line methiodide, in the VMH, prior to hypoglycemia, rats 
showed significant increases in glucagon and epinephrine 
responses when compared with hypoglycemic rats injected 
with a GABA agonist.49 Conversely, when given a GABA 
antagonist, modafinil, before a state of induced hypogly-
cemia, release of norepinephrine, but not of ACTH, cortisol 
or growth hormone, was increased in healthy adults.50 
Similarly, modafinil was shown to improve ‘adrenergic 
sensitivity’ and cognitive function in hypoglycemic adults 
who had been injected with the GABA antagonist prior to 
hypoglycemia.51 In summary, GABA agonists reduce count-
er-regulation, and GABA antagonists were able to partially 
improve counter-regulation during hypoglycemia.

role of n-methyl d-aspartate receptors
N-methyl D-aspartate (NMDA) is an excitatory gluta-
mate receptor. It has been implicated in long-term poten-
tiation of memory formation and learning.52 A study in 
dogs treated with an NMDA antagonist before undergoing 
insulin- induced hypoglycemia found a reduction in plasma 
epinephrine and cortisol levels, suggesting that glutamate 
stimulates the hypothalamic-pituitary-adrenal and the 
sympathetic-adrenal axis via NMDA channels.53 When 
given an NMDA antagonist for 4 days prior to undergoing 
hypoglycemic studies, healthy human subjects demon-
strated reduced cortisol, ACTH, epinephrine, norepineph-
rine, growth hormone, and glucagon secretion, which led 
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the authors to conclude that NMDA antagonists are not 
effective in preventing the hypoglycemic counter-regula-
tory response.52 However, a study found that memantine, 
an NMDA antagonist, caused an increase in counter-reg-
ulatory hormones as well as neuroglycopenic symptoms 
in healthy adults.54 Thus, the role of NMDA in HAAF 
warrants further study.

hormones
role of cortisol
An intriguing pair of studies suggested that hypercorti-
solemia induced by hypoglycemia could contribute to the 
development of HAAF. When cortisol was infused twice 
to match hypoglycemia-induced rises in cortisol levels in 
healthy males, counter-regulatory hormonal responses to 
hypoglycemia on the following day were suppressed to a 
degree similar to antecedent hypoglycemia.55 These inves-
tigators then performed a similar study in patients with 
primary adrenocortical failure. In the absence of normal 
cortisol secretion, recurrent episodes of hypoglycemia 
failed to induce HAAF in these patients, although baseline 
epinephrine responses were also profoundly suppressed in 
these patients.56 Another study supported these findings by 
demonstrating reduced autonomic hormonal responses to 
hypoglycemia and reduced hypoglycemic symptoms after 
infusion of α-(1-24)-ACTH, which raised cortisol levels.57 
However, two subsequent studies did not report an effect of 
antecedent cortisol elevation on the development of HAAF 
in healthy subjects. Antecedent cortisol infusion on the 
previous day did not reduce counter-regulatory hormonal 
responses to a single episode of hypoglycemia in healthy 
non-diabetic subjects.58 In addition, Goldberg et al studied 
the effect of both antecedent cortisol and metyrapone, a 
blocker of endogenous cortisol production. Neither cortisol 
nor metyrapone had a significant effect on counter-regula-
tory hormonal responses to hypoglycemia, compared with 
control.59 Given differences in study design and subject 
populations among the above studies, the role of cortisol in 
the development of HAAF remains to be further clarified.

role of sex hormones
Sex hormones such as estrogen and dehydroepiandroste-
rone (DHEA) or DHEA sulfate (DHEAS) have been studied 
to assess their roles in the development of HAAF. Because 
women have been shown to have reduced neuroendo-
crine and sympathetic nervous system responses to phys-
ical and cognitive stress, investigators have hypothesized 
that estrogen may affect counter-regulation during hypo-
glycemia.60 During a hypoglycemic clamp, counter-reg-
ulatory hormonal responses were significantly reduced in 
estrogen-receiving postmenopausal women compared with 
either postmenopausal women without estrogen replace-
ment or to men.60

Patients with rheumatoid arthritis were found to have 
lower levels of DHEAS, which was associated with reduced 
counter-regulatory hormonal responses during hypogly-
cemia.61 Recently, another group studied the effect of 
DHEA administration on development of HAAF, suggesting 
that DHEA and DHEAS have anti-GABA, anticorticoste-
roid, stimulatory nitric oxide, and NMDA agonist effects, 
all of which could potentially improve counter-regulatory 

responses during recurrent hypoglycemia.62 After 
antecedent hypoglycemia, subjects receiving placebo had a 
reduced co unter-regulatory hormonal response, but 
those who received DHEA had a preserved counter-reg-
ulatory response. Overall, despite the limited amount of 
studies, male and female sex hormones seem to have oppo-
site effects on counter-regulation during hypoglycemia, 
with DHEA or DHEAS improving the counter-regulatory 
hormonal response while estrogen impairs the response.

role of glucagon-like peptide-1
Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl 
peptidase-4 (DPP-4) inhibitors increase glucose-stimulated 
insulin secretion, inhibit glucagon release,63 and lower glucose 
levels during hyperglycemia without causing severe hypogly-
cemia. When lixisenatide was given for 6 weeks to patients 
with T2DM, epinephrine and glucagon levels were signifi-
cantly reduced during mild hypoglycemia but not during 
severe hypoglycemia.64 Similar findings were reported when 
albiglutide was given to patients with T2DM as glucagon 
levels were not significantly different compared with placebo 
control.63 When exenatide was administered to non-diabetic 
subjects during a hypoglycemic clamp, no sign ificant 
difference in the counter-regulatory hormonal response was 
shown. However, another group showed that synthetic GLP-1 
significantly reduced growth hormone secretion in response 
to hypoglycemia.65 66 These disparate findings may reflect 
the slightly different actions of exenatide versus GLP-1 in 
their ability to modulate various elements of the hypogly-
cemic counter-regulatory hormonal response. In patients with 
T2DM, linagliptin (DPP-4 inhibitor) and liraglutide (GLP-1 
agonist) reduce hyperglycemia without increasing the risk of 
hypoglycemia, and have no effect on the overall counter-reg-
ulatory response including glucagon secretion to hypogly-
cemia.67 Oral saxagliptin (DPP-4 inhibitor) in patients with 
T1DM does not reduce frequency of hypoglycemia or degree 
of hypoglycemia awareness, and does not improve the count-
er-regulatory hormonal response during hypoglycemia.68 
In patients with T1DM, the addition of vildagliptin (DPP-4 
inhibitor) to insulin therapy showed a significant reduction 
in the hemoglobin A1c, and caused reduced glucagon levels 
during meals without affecting glucagon secretion during 
hypoglycemia.69 Improved glucose control through use of 
these medications could be benefi cial in preventing severe 
hypoglycemia, thereby indirectly preventing development of 
HAAF, but these agents do not appear to have a direct role 
in the mediating the counter-regulatory hormonal response.

nutrIents
role of fructose
It is hypothesized that a ‘catalytic’ dose of fructose modulates 
glucokinase activity in glucose-sensing cells, contributing to 
fructose’s counter-regulatory effect.70 71 In both human and 
animal studies, it has been demonstrated that fructose plays 
an important role in counter-regulatory responses to hypo-
glycemia. Fructose infusion during a hypoglycemic clamp 
study caused a significant increase in epinephrine levels 
compared with placebo in both non-diabetic subjects and 
subjects with T1DM.70 71 Subsequently, endogenous glucose 
production rose by 47% in non-diabetic participants and 
by 90% in participants with T1DM compar ed with 
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control, respectively. The fructose-induced rise in epineph-
rine was unique, as no changes in plasma norepinephrine, 
growth hormone, or cortisol were observed. However, 
while the study in subjects with T1DM demonstrated no 
change in glucagon levels, the study in non-diabetic subjects 
demonstrated marked increases in both glucagon and 
epinephrine levels during hypoglycemia. Similarly, a hypo-
glycemic clamp study in dogs showed that fructose infusion 
produced a large rise in hepatic glycogen, which increased 
epinephrine and glucagon levels during hypoglycemia and 
raised net hepatic glucose output.72 Additionally fructose, 
although unable to cross the blood-brain barrier (BBB), 
acts directly on VMH of the brain, a region with prevailing 
systemic circulation.71 73 It has been shown in humans that 
fructose inhibited prolactin secretion, slightly weakened 
and delayed ACTH secretion, and did not affect growth 
hormone secretion during hypoglycemia.74 This suggests a 
role for fructose in the regulation of endogenous glucose 
production by a brain-liver pathway via central nervou
 s system locations unprotected by the BBB.72 74 Currently, 
there are few studies examining the relationship of fructose, 
hypoglycemia, and HAAF.

role of free fatty acids and ketones
Epinephrine levels rise in response to hypoglycemia and 
induce increased lipolysis, demonstrated by a rise in the 
lipid precursors, glycerol and free fatty acids (FFA).75 76 
This relationship is supported by a study showing that α-ad-
renergic and β-adrenergic blockades suppressed FFA levels 
during recovery from hypoglycemia.39 Epinephrine release 
during exercise-induced hypoglycemia was associated with 
an increase in FFA levels in addition to stimulating endoge-
nous glucose production. In addition, Hussain et al showed 
that administration of IGF-1 resulted in increased FFAs and 
ketone bodies during hyperinsulemic-euglycemic clamp 

studies in healthy humans.77 In another hypoglycemic 
clamp study, Haywood et al concluded that infusion of 
intralipids into the brain can augment the sympathoadrenal 
response during a single episode of hy poglycemia 
in rats, whereas systemic infusion of intralipids did not 
improve the counter-regulatory response.78 Also, following 
recurrent hypoglycemia, rats with intracerebroventricular 
infusion of intralipids demonstrated a restored sympatho-
adrenal response to hypoglycemia.

In normal physiology, glucose is the main energy source 
for the brain, but during prolonged fasting, ketones can be 
used as an alternative energy source. Amiel et al examined 
the effect of hyperketonemia on the counter-regulatory 
hormone response to hypoglycemia in healthy humans.79 
During ketone infusion, the glycemic threshold for stimu-
lating an epinephrine response, and the peak epinephrine 
response, were both reduced. In addition, ketone infusion 
resulted in reduced peak norepinephrine, cortisol, and 
growth hormone responses. Ketones, an alternative energy 
source, weaken the neurohormonal responses to hypogly-
cemia as the brain acknowledges the presence of another 
source of energy. More research should be done  to 
expand these important observations.

conclusIons
Extensive amount of studies has been done to understand 
the mechanism of HAAF. Various agents have been identi-
fied as important in the underlying mechanisms of HAAF, 
including: 1) central pathways (modulation of opioid recep-
tors, KATP channels, adrenergic receptors, SSRI, GABA recep-
tors, NMDA receptors); 2) hormones (cortisol, estrogen, 
DHEA/DHEAS, GLP-1); and 3) nutrients (fructose, FFA, 
ketones). Currently, it is apparent that the mechanisms 
underlying the development of HAAF are not dependent on 
a single pathway (as presented in figure 1). As researchers 

figure 1 Potential mechanisms of hypoglycemia-associated autonomic failure (HAAF).
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further study the mechanism of HAAF with more sophisti-
cated study designs and different routes of administration of 
various agents, there is great potential for studies involving 
combinations of medications that could offer additive or 
synergistic effects in the treatment of HAAF.
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