Artificial intelligence to diagnose ear disease
using otoscopic image analysis: a review
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ABSTRACT

Al relates broadly to the science of developing
computer systems to imitate human intelligence,
thus allowing for the automation of tasks that
would otherwise necessitate human cognition.
Such technology has increasingly demonstrated
capacity to outperform humans for functions
relating to image recognition. Given the current
lack of cost-effective confirmatory testing, accurate
diagnosis and subsequent management depend
on visual detection of characteristic findings during
otoscope examination. The aim of this manuscript
is to perform a comprehensive literature review
and evaluate the potential application of artificial
intelligence for the diagnosis of ear disease from
otoscopic image analysis.

INTRODUCTION

Ear-related symptoms are the leading health-
related concern expressed by parents in rela-
tion to their child’s general health." Even in
the absence of ear-specific symptoms, parents
frequently attribute behavioral changes in their
child such as increased irritability and disrupted
sleep to ear disease.” It is therefore unsur-
prising that ear-related concerns constitute the
leading cause for seeking pediatric healthcare
attention.'

Disease of the middle ear and external audi-
tory canal represent a heterogeneous spectrum
of pathological entities that beyond having
some shared symptomatic overlap, can also
present with constitutional symptoms such
as fever, nausea or abdominal pain.’ Clinical
history may therefore be unrevealing in terms of
underlying otological etiologies.* The current
diagnostic ‘gold standard’ is highly reliant on
the identification of pathognomonic findings
during otoscopic examination given the absence
of cost-effective clinical test. The diagnostic
accuracy of ear disease is directly dependent
on the exam proficiency and diagnostic skill
and interpretative expertise of the otoscope
operator.” The American Academy of Pediatric
therefore stresses the importance of ensuring
proficiency in ear exam, recommending that
otoscopic training be initiated early during
medical school and continuing throughout post-
graduate training.® Medical student and junior
physicians however have frequently been found
to report lack of confidence in their ability to
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both examine and diagnose ear pathology.”*°

Pichichero et al investigated diagnostic perfor-
mance based on otoscope exam among a size-
able cohort of US pediatricians (n=2190) and
general practitioners (n=360) and found to
be 51% (*11) and 46% (*26), respectively
(p<0.0001). Findings from this study further
demonstrated a clear bias towards overdiagnosis
of pathological ear disease.® Similar diagnostic
performance has subsequently been replicated
by a number of studies.® '~

In alignment with the bias toward overdi-
agnosis of ear disease, it is currently estimated
that between 25% and 50% of all antibiotics
prescribed for ear disease are not indicated.”®™"
Beyond risking unnecessary medical compli-
cations and the downstream unintended
consequence of potential antibiotic resistance,
overdiagnosis of ear disease adds an esti-
mated US$59 million in unnecessary health-
care spending in the USA per annum.'® In an
effort to standardize appropriate diagnosis
and treatment of pathological ear disease, a
number of initiatives have been implemented,
the most notable of which was the development
of societal guidelines across otolaryngology
and pediatrics for commonly encountered ear
disease.'*™"® While the publication of clinical
guidelines has provided much-needed evidence-
based consensus relating to standardization of
care, these guidelines have had limited impact
on everyday clinical practice.””' Actualizing
change in clinical practice presents consider-
able challenges and relates to several reciprocal
factors including clinicians’ lack of aware-
ness, familiarity, agreement, self-efficacy and
outcome expectancy, in addition to the inertia
of previous practice, and presence of external
system barriers.”? These factors lay the exciting
groundwork for the role of artificial intelligence
(AI), an emerging tool that may provide tech-
nological capacity to overcome these challenges
by providing clinicians with direct medical
decision guidance and feedback, thereby mini-
mizing treatment variation and ensuring high-
quality care delivery.”

Al relates broadly to the science of developing
computer systems to imitate human intelli-
gence, thus allowing for the automation of tasks
that would otherwise necessitate human cogni-
tion.”* * While contemporary technology lacks
the capacity to match or surpass general human
intelligence, a form of AI known as narrow
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artificial intelligence (NAI) has demonstrated proficiency
to complete well-circumscribed subtasks without needing
external (human) input.?® # Machine learning (ML) algo-
rithms are among the most commonly applied form of NAI
and will constitute the focus of this review.

ML algorithms are data analytic models that can learn
automatically from previous experience without need for
external input.”® This functionality enables ML algorithms
to be deployed to infer meaning or categorize data according
to specific data traits, within structured data sources such
as images.” The mathematical framework coded for by
an ML algorithm is explicit but can be trained to process
any presented data that is compatible. In fact, this general-
izability has enabled the release of numerous open-source
ML algorithm models online. Interested users can therefore
develop their own Al tools simply by uploading training
data to one of these open-source ML algorithms.?* *!

During ML algorithm training, the parameters of the
framework are fitted to the desired function, thereby
enables the ML algorithm to infer meaning or catego-
rize unseen data during deployment.”’ Training can be
performed using a supervised, unsupervised or reinforced
learning approach.*” In supervised learning, ML training is
performed using labeled datasets. Using a trial and error
method, the ML algorithm learns to recognize the correct
data trait necessary for the desired task. Unsupervised
learning, in contrast, relies on the ML algorithm analyzing
unlabeled data and categorizing the data according to
inherent traits discovered within the training. Reinforced
learning represents a hybrid approach, which relies on using
both labeled and unlabeled data for training.

Contemporary ML algorithms have demonstrated func-
tional capacity to equal that of human for tasks of image
recognition and at times have even exceeded it.”® This has
motivated clinical application of this technology with ML
algorithms being developed to automate numerous medical
tasks, such as the reading of ECGs, the interpretation of
radiological images and the diagnosis of skin lesions.?® %3 3*
The aim of this manuscript is to perform a comprehensive
literature review and evaluate the potential application of
such ML algorithm for the diagnosis of ear disease from
otoscopic image analysis.

METHODS

Search strategy

A literature search was conducted using PubMed (1953-
2020), EMBASE (1974-2010), CINAHL (1982-2020),
PsycINFO (1887-2020) and Web of Science (1945-2020),
using the search strings: (Artificial Intelligence) AND (Ear
Disease).

Study selection

After removing duplicated cases, the search results were
imported into a reference management tool (Zotero,
5.0.96). The first author screened all titles and abstract.
Inclusion criteria were titles and/or abstract containing the
words “Artificial Intelligence” and terms related to “Middle
or External Ear Disease”. The exclusion criterion included
were non-English language, not peer reviewed, not using
image analysis from clinical examination, or articles not
presenting primary data. The references of all included

articles were inspected for any relevant citations not discov-
ered with our search strategy.

Data extraction and quality assessment

Data extraction and quality assessment was performed in
accordance with Lou ef al. Guidelines for developing and
reporting ML predictive models in biomedical research: a
multidisciplinary view.* Full and comprehensive review
was sequentially completed by authors JHC and WW of all
articles meeting criteria for inclusion.

Data synthesis and analysis

Each article was summarized in a Microsoft Word table
detailing article type, data input, ML design, diagnosis
used, image capture device, training of and number of
image annotators, image pixel size, size of training dataset,
reported diagnostic performance and area under the
receiver operating characteristic curve (AUROC). The ad
hoc nature of reported outcomes prevented further analysis
beyond description.

RESULTS

The literature search strategy yielded 1862 citations, of
which 9 manuscripts were eligible for review (figure 1). All
included manuscripts detail the development of Al algo-
rithms with the capacity to diagnose ear disease from a
single photographic image without needing external input.
The disease processes that the algorithms were trained to
diagnose varied considerably between groups (table 1).

Selection of Al method

ML, a class of Al algorithms, was used in the development
of all nine diagnostic algorithms.*** Of the nine algo-
rithms, six were developed using a form of ML known as
Deep Neural Networks.*® **** The remaining three algo-
rithms were developed using a variety of commonly used
forms of ML models (Support Vector Machine, k-Nearest
Neighbor and Decision Trees).*” **

Al algorithm training

All algorithms were trained using a similar method which
necessitates the creation of image databases. Database
images consisted of representative images of the chosen
trait and have been annotated as being that diagnosis.
Multiple strategies were applied for image collection, with
five of the groups collecting these data in a prospective
fashion®®#4°** and three relying on previously established
image databases.”’™ One group relied entirely on images
from Google Image search to create their database while
Livingstone and Chau supplemented their database with
images collected from Google Search and Textbooks.*® ¥
A variety of devices including digital otoscopes and endo-
scopes were used for image capture (table 1). Image size
was stated in four manuscripts, and ranged from 224x224
pixels to 486x486 pixels.*® %7 **** Annotation of training
data was performed by ear specialists, which was defined
consistently as being an otolaryngologist or an otologist.**™**
A cohort consisting of two ear specialists was used in seven
manuscripts and image inclusion to the database required
diagnostic agreement by both ear specialist.’® 33414 % Ip
the remaining two manuscripts, annotation was performed
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FIGURE 1:

PubMed (1953-2005), EMBASE (1974~
2010), CINAHL Plus (1982-2010),
PsychINFO (1887-2010), and Web of
Science (1945-2010)
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Review Title, Abstract, and References

Inclusion Criteria —

* Related to clinical diagnosis of middle or external
ear disease using Al

*  Peer Reviewed

Exclusion Criteria —

* Primary language not English

* Not using images from clinical examination

* Article not presenting primary data
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Number of Articles Reviewed - 9

Artificial Intelligence AND Ear Disease ‘ ‘ ‘ Number of Articles Found - 1862

‘ ‘ Number of Articles Rejected - 1,853

Figure 1

by a single otolaryngologist.’” ** The size of the database
used for training varied between manuscripts ranging from
183 to 8435 images.*” **

Al algorithm testing
In eight of the manuscripts, a cohort of representative, non-
annotated images were reserved for testing and not included
in algorithm training.**® *** The cohort of images was
independently presented for inference of diagnosis by both
the Al algorithms and the same cohort of ear specialists
used to annotate the training data (see table 1 for list of
diagnosis used within each manuscript). The AI algorithm’s
diagnostic performance was then rated by comparing the
algorithms inferred diagnostic results with those of the ear
specialist. Using this methodology, the diagnostic accuracy
performance of the eight ML algorithms was reported for
a variety of trained diagnosis ranging between 80.6% and
98.7%." ** There was considerable variation in the sensi-
tivity (recall) and the positive predictive value (precision)
among the algorithms for their selected diagnosis, which
ranged between 50.0%-100%and 14.3%-100%, respec-
tively.*® Of these eight algorithms, the AUROC score was
reported in four and ranged between 0.91 and 1.0.°”
Habib et al tested their Al algorithm using an image data-
base that was not used during training. Despite the variation
in image quality between the images used in training and
those used for testing the algorithm achieved a diagnostic
accur;lgcy performance average of 76% with an AUROC of
0.86.

Al algorithm comparison with non-ear specialist

Two manuscripts further tested their Al by comparing the
diagnostic performance of the algorithm in comparison to
a cohort of non-ear specialist clinicians. Both manuscripts
report their Al algorithm’s as surpassing the diagnostic
performance of the non-ear specialist cohort (table 2).%¢

Flow chart of article selection from the literature search strategy.

Using a different approach, Myburgh et al created a
rudimentary but cost-effective video-otoscope that was
deployed with an experienced general practitioner to trial
during routine shifts in a South African emergency room.
Captured images from this device were then transferred for
independent analysis by a computer with the Al algorithm.
The results of the algorithms were then compared with the
correct result, which the group defined as the diagnosis
inferred by the general practitioner. In this small pilot study,
the diagnostic accuracy of the Al algorithm was determined
to be 78.7%.*

DISCUSSION

In this review, we identified nine manuscripts that provide
small proof-of-concept studies for the application of ML
algorithms in the diagnosis of ear disease from an image
captured during an otoscopic exam. The study designs of
the manuscripts however largely fail to demonstrate mean-
ingful performance validation of the ML algorithms, and
include a lack of comparison of the ML algorithms with
current care standards in a clinical setting. Attempts to use
this literature to contemplate the clinical potential of such
ML algorithms are therefore significantly hampered by the
paucity of details relating to pathways for scaling the tech-
nology. Furthermore, and perhaps more significantly there
is a fundamental failure in providing a specific outline for
how such technology will fit within the current model of
healthcare delivery.

The manuscripts included in this review relied on an ML
method to algorithm development and a supervised learning
approach to training. In this approach, the algorithms were
presented a group of annotated images depicting the pathog-
nomonic appearance of a specific diagnosis. To adhere to
ML terminology, henceforth the term ‘domain’ will replace
the word ‘diagnosis’ in a synonymous fashion. The term
‘ground truth’ is often the nomenclature used to describe
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Table 2 Diagnostic performance of non-ear specialist versus machine learning (ML) algorithm

3638

Study Clinician cohort (n) Non-ear specialist diagnostic performance ML algorithm diagnostic performance
Khan et al*® Specialists (7)* 74.0% 87.0%
Residents (6)*
Interns (4)*
Livingstone and Otolaryngology residents (5) 58.9% 88.7%
Chau®® Pediatric medicine resident (1)

Internal medicine resident (1)
Emergency medicine resident (1)
General practitioners (2)

*No further detail provided in manuscript.

the labeled data used to train the algorithm to recognize a
characteristic data pattern that occurs within the data that is
specific to that domain. Once the ML algorithm is trained,
it codes a computer program that provides a mathematical
framework that enables computer systems to analyze previ-
ously unseen, non-labeled data. Running such a program
enables computation either of the ‘presence’ or ‘absence’
of a trained domain in the case of a non-predictive model
such as the Decision Tree, or the ‘statistical likelihood’ of
a trained domain occurring within the data in case of a
predictive model such as deep learning (DL). As demon-
strated in this review, despite ML algorithms coding for
different mathematical frameworks the various designs can
be trained to perform the same functional task. DL is the
most contemporary form of ML, and represents the design
most commonly selected by the included manuscripts. As
such, this form of ML algorithm will be described in greater
detail.

DL designs demonstrate a great capacity for discovering
intrinsic patterns within structured data and can be used
to directly analyze pixel intensity. Deploying a DL design
(using a supervised learning approach to training) therefore
enables the algorithm to simply be presented with the desired
ground truth which in this case would consist of otoscopic
images stratified and labeled according to a specific domain.
Next, without external input, the algorithm performs image
analysis, which enables it to discover intrinsic pixel patterns
within the image, specific to that domain. The advantage
of this is that it negates the previous requirement for ML
developers to manually abstract a data pattern for the
algorithm to use. For tasks relating to image recognition,
one of the most common forms of DL deployed is called
Convolutional Neural Networks (CNN).* CNN performs
image recognition tasks by extracting hierarchical features
from images in segments termed, convolutional layers. The
network is composed of learnable parameters (eg, filters
in the convolutional layers) that are developed during
training with labeled data. Once trained, the accuracy of
the algorithm is further refined by presenting unlabeled
training data and adding weights within the model that
serve to increase the likelihood of the algorithm conferring
the correct diagnosis.*® The development of these models,
therefore, requires a large quantity of data. A further disad-
vantage of DL models is that training and refinement can
be technically challenging. Within training data, there are
multiple millions of trainable parameters, presenting signif-
icant challenges for a developer to know whether the algo-
rithm is using the optimal parameter within the data. There
is also a need to balance the number of convolutional layers

used with the targeted algorithm performance. For example,
with a properly engineered structure, a larger number of
convolutional layers can potentially improve the prediction
accuracy and increase the training and processing time for
images because more computation is necessary. More tradi-
tional ML algorithm designs that were also included in this
review provide ML developers with differing advantages
and disadvantages as outlined in table 3.

The selection of an ML algorithm design depends on a
multitude of factors including the data being used (format,
complexity and quantity), the planned approach to training,
and most importantly, the algorithm’s performance accu-
racy in predicting the desired outcome.*

The diagnostic performance data in a controlled setting
was provided by all the included manuscripts. Study design
for algorithm testing was uniformed across manuscripts
with accuracy, precision and recall being determined by
comparing domain prediction of the ML algorithm (for
previously unseen and unlabeled images) against those
domains provided for the same images by a cohort of ear
specialists. It should be noted that in all groups the cohort
of ear specialists was the same for both algorithm training
and testing. Using these performance metrics, the ML
models demonstrated a high level of diagnostic accuracy
(76%-95%), precision (83%-95%) and recall (79%-95%)
for certain trained domains (table 1). In the process of devel-
oping their algorithm, Viscaino et al noted that the trial of
three different ML algorithm designs, with Support Vector
Machine and k-Nearest Neighbor demonstrated superior
performance compared with that of the Decision Tree clas-
sification.’” Five of the included manuscripts also reported
AUROC scores. An AUROC score serves to chracterize
the ML algorithm’s capacity to distinguish between a non-
disease state and a disease state under tradeoff between
sensitivity and specificity using different decision thresh-
olds. The AUROC scores reported in this review range
between 0.86 and 0.99. The closer an AUROC score is to
1.00, the greater the discriminatory ability the ML algo-
rithm has, with 1.0 meaning that the algorithm is able to
reach 1.0 sensitivity and 1.0 specificity at the same time.*”**
Performance comparison between the nine diagnostic ML
algorithms is inappropriate given that each was developed
using different data quality and diagnosis selection. As a
result, each of the ML algorithms should be considered as
performing a function unique to itself, which will differ in
the level of complexity relative to the function of the other
included ML algorithms. In addition to algorithm testing
data, two manuscripts compared the diagnostic perfor-
mance of non-ear specialists with their ML algorithms in a
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Table 3  Basic principle and comparison of included machine learning (ML) model design

ML model Basic principle Advantage Disadvantage
Convolutional Neural Performs data recognition by extracting 1. No input abstraction required 1. Requires large amount of data
Networks hierarchical features from data with 2. Applied directly to pixels 2. Complex to training and refine
convolutional layers. The network is composed of 3. Millions of trainable data
trained parameters that are learnt from labeled parameters
data.
Decision Tree classification Relies on a branching structure where each 1. Normalization or scaling of data 1. Quickly becomes overly complex
branch (node), in a binary fashion, directs to a non- needed with multiple domains
specific outcome (leaf). 2. No considerable impact of missing 2. Challenging to manage data outliers
values
3. Easy to explain and visualize
k-Nearest Determine the distance between plotted 1. Very simple 1. Cumbersome on large datasets
Neighbor unlabeled data relative to labeled data. The 2. No assumption about data 2. Suboptimal for datasets with a large
unlabeled data are classified to share the domain 3. Can solve multidomain problems number of domains
of the nearest labeled neighboring data. 3. Sensitive to data outliers
Support Vector Machine Labeled data are plotted with each domain being 1. Perform well with multiple different 1. For large dataset, requires a

represented by a particular set of coordinates. The
algorithm then calculates optimal hyperplanes,
which function as lines that best separate the
domains. Then depending on the laterality
unlabeled data fall relatively to this line serves to
determine the domain the data are classified as
representing.

data domains present
Data outliers have little impact on
performance 2.

significant amount of processing
time

Poor performance if domains
overlap is present

3. Training can be challenging

non-clinical setting. This was accomplished in both manu-
scripts by comparing both the non-ear specialist group’s and
algorithm’s diagnostic inference from otoscopic captured
images with that of an ear specialist cohort who served
as the control. Both manuscripts report that the ML algo-
rithm diagnostic inference outperforms that of the non-ear
specialist group.®® ¥’ Caution, however, is needed in the
interpretation of these findings, as the design of the study
was suboptimal due to it being performed in a non-clinical
setting, and with a reliance on small sample size and incom-
plete data. Furthermore, the non-specialist cohorts demon-
strated significant variation in the level of both training and
experience resulting in considerable data spread.

On review of the reported testing data, an argument
could be made that there is literature to support that these
ML algorithms already demonstrate the capacity to outper-
form the diagnostic efforts of a non-specialist. In particular,
Pitchichero et al investigated the diagnostic accuracy of pedi-
atricians and general practitioners for a normal ear exam,
acute otitis media or otitis media with effusion after viewing
an otoscopic exam video. This study found a fair diagnostic
accuracy of 51% (£11) and 46% (%21) for pediatricians
and general practitioners, respectively.” When comparing
this with the reported diagnostic performance of the ML
algorithms trained to recognize these three diagnoses, the
results (78%-95%) surpass those of both pediatricians and
general practitioners.’® ** ** * The validity of this argument
is uncertain however as the study by Pitchichero et al and
the ML algorithms were performed in controlled settings
that are unlikely to be encountered in clinical practice.
Furthermore, the success of an ML algorithm is dependent
on many factors in addition to diagnostic performance.
This is clearly demonstrated when considering that despite
generating considerable excitement within healthcare and
the widespread, rapid emergence of increasingly accurate
ML algorithms, the clinical adoption of such technology has
not occurred at nearly the same pace.*” *®

One of the large challenges with developing ML algo-
rithms is the process of scaling the technology beyond the
laboratory. As previously described, the functionality of an
ML algorithm is dependent on adherence to a predefined
model. The models are fitted during the training of the ML
algorithm and enable inference of specific domains once
deployed. Hence, meticulous attention and foresight is
therefore required at this stage to ensure that the character-
istics patterns used for the training of the ML algorithm are
universally agreed on as being representative of the selected
chosen domain and that the characteristics patterns are
representative of the selected diagnosis typically encoun-
tered in the clinical setting.*” As well as not detailing a
pathway to scaling, the non-standardization approach
to data collection and the methodology employed by the
reviewed studies also increase the risk of the reported ML
algorithm demonstrating limited widespread applicability.
In addition, scaling this technology beyond the laboratory
is likely to face further challenges during deployment if
the data used for algorithm training are not of comparable
quality with that captured in a clinical setting. Given that
ML algorithms rely on the characteristics of the elements
that make up an image (pixels) to infer a diagnosis, any
change due to variation in image captures such as using a
different image capturing system or variable image capture
settings, will adversely impact the algorithm’s performance.
This could represent considerable challenges to the ability to
scale this ML algorithm-based technology given that a large
percentage of clinicians remain without access to digital
otoscopes, and if digital otoscopes are being used there is
still the inherent risk of variation in image acquisition and
quality, which would confound diagnostic accuracy.

Beyond functionality and challenges of technological
scalability, perhaps the more fundamental, unanswered
question that remains is how such technology will inte-
grate with the current healthcare delivery model. To
date, a common crux within Al development is related to
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innovation, which remains outside of the core processes
that drive care delivery.*® ** For example, it remains to be
determined whether the relatively poor diagnostic accuracy
and excessive antibiotic prescribing practices are important
enough to practitioners to motivate widespread adoption of
this emerging technology and investment of the associated
monetary costs.’! There is also a need to better understand
any objective factors that influence why clinicians make
decisions as this will also impact the value of this tech-
nology. For example, if clinicians, in part, prescribe anti-
biotics due to the expectation of a concerned parent, then
it is unlikely that this practice will change even if this tech-
nology is implemented. The recent trend towards telemed-
icine is also likely to present uncertainty for the successful
implementation of this technology, as this will require ear
exams to be performed by either a parent or guardian.

Several limitations of this review should be considered.
First, the manuscripts included in this review use rela-
tively small sample sizes, ad hoc methodology and variable
outcomes, which limit the ability to generalize findings.
Second, as highlighted above, the performance of the algo-
rithms is specific to a controlled setting and might not
represent actual clinical performance. Third, the method by
which such technology can be clinically deployed is influ-
enced by a number of variable factors, and the role of Al
diagnostic tools within the current healthcare workflow
remains unknown.

CONCLUSION

The current literature provides some proof of evidence
supporting the capacity of Al to diagnose ear disease with
otoscope image analysis. This work, however, remains in its
infancy, and there is a need for well-designed prospective
clinical studies before the potential of such Al technology
can fully be elucidated.
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