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ABSTRACT
AI relates broadly to the science of developing 
computer systems to imitate human intelligence, 
thus allowing for the automation of tasks that 
would otherwise necessitate human cognition. 
Such technology has increasingly demonstrated 
capacity to outperform humans for functions 
relating to image recognition. Given the current 
lack of cost- effective confirmatory testing, accurate 
diagnosis and subsequent management depend 
on visual detection of characteristic findings during 
otoscope examination. The aim of this manuscript 
is to perform a comprehensive literature review 
and evaluate the potential application of artificial 
intelligence for the diagnosis of ear disease from 
otoscopic image analysis.

INTRODUCTION
Ear- related symptoms are the leading health- 
related concern expressed by parents in rela-
tion to their child’s general health.1 Even in 
the absence of ear- specific symptoms, parents 
frequently attribute behavioral changes in their 
child such as increased irritability and disrupted 
sleep to ear disease.2 It is therefore unsur-
prising that ear- related concerns constitute the 
leading cause for seeking pediatric healthcare 
attention.1

Disease of the middle ear and external audi-
tory canal represent a heterogeneous spectrum 
of pathological entities that beyond having 
some shared symptomatic overlap, can also 
present with constitutional symptoms such 
as fever, nausea or abdominal pain.3 Clinical 
history may therefore be unrevealing in terms of 
underlying otological etiologies.4 The current 
diagnostic ‘gold standard’ is highly reliant on 
the identification of pathognomonic findings 
during otoscopic examination given the absence 
of cost- effective clinical test. The diagnostic 
accuracy of ear disease is directly dependent 
on the exam proficiency and diagnostic skill 
and interpretative expertise of the otoscope 
operator.5 The American Academy of Pediatric 
therefore stresses the importance of ensuring 
proficiency in ear exam, recommending that 
otoscopic training be initiated early during 
medical school and continuing throughout post-
graduate training.6 Medical student and junior 
physicians however have frequently been found 
to report lack of confidence in their ability to 

both examine and diagnose ear pathology.7–10 
Pichichero et al investigated diagnostic perfor-
mance based on otoscope exam among a size-
able cohort of US pediatricians (n=2190) and 
general practitioners (n=360) and found to 
be 51% (±11) and 46% (±26), respectively 
(p<0.0001). Findings from this study further 
demonstrated a clear bias towards overdiagnosis 
of pathological ear disease.3 Similar diagnostic 
performance has subsequently been replicated 
by a number of studies.6 11–14

In alignment with the bias toward overdi-
agnosis of ear disease, it is currently estimated 
that between 25% and 50% of all antibiotics 
prescribed for ear disease are not indicated.13–15 
Beyond risking unnecessary medical compli-
cations and the downstream unintended 
consequence of potential antibiotic resistance, 
overdiagnosis of ear disease adds an esti-
mated US$59 million in unnecessary health-
care spending in the USA per annum.16 In an 
effort to standardize appropriate diagnosis 
and treatment of pathological ear disease, a 
number of initiatives have been implemented, 
the most notable of which was the development 
of societal guidelines across otolaryngology 
and pediatrics for commonly encountered ear 
disease.16–18 While the publication of clinical 
guidelines has provided much- needed evidence- 
based consensus relating to standardization of 
care, these guidelines have had limited impact 
on everyday clinical practice.19–21 Actualizing 
change in clinical practice presents consider-
able challenges and relates to several reciprocal 
factors including clinicians’ lack of aware-
ness, familiarity, agreement, self- efficacy and 
outcome expectancy, in addition to the inertia 
of previous practice, and presence of external 
system barriers.22 These factors lay the exciting 
groundwork for the role of artificial intelligence 
(AI), an emerging tool that may provide tech-
nological capacity to overcome these challenges 
by providing clinicians with direct medical 
decision guidance and feedback, thereby mini-
mizing treatment variation and ensuring high- 
quality care delivery.23

AI relates broadly to the science of developing 
computer systems to imitate human intelli-
gence, thus allowing for the automation of tasks 
that would otherwise necessitate human cogni-
tion.24 25 While contemporary technology lacks 
the capacity to match or surpass general human 
intelligence, a form of AI known as narrow 
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artificial intelligence (NAI) has demonstrated proficiency 
to complete well- circumscribed subtasks without needing 
external (human) input.26 27 Machine learning (ML) algo-
rithms are among the most commonly applied form of NAI 
and will constitute the focus of this review.

ML algorithms are data analytic models that can learn 
automatically from previous experience without need for 
external input.28 This functionality enables ML algorithms 
to be deployed to infer meaning or categorize data according 
to specific data traits, within structured data sources such 
as images.29 The mathematical framework coded for by 
an ML algorithm is explicit but can be trained to process 
any presented data that is compatible. In fact, this general-
izability has enabled the release of numerous open- source 
ML algorithm models online. Interested users can therefore 
develop their own AI tools simply by uploading training 
data to one of these open- source ML algorithms.30 31

During ML algorithm training, the parameters of the 
framework are fitted to the desired function, thereby 
enables the ML algorithm to infer meaning or catego-
rize unseen data during deployment.21 Training can be 
performed using a supervised, unsupervised or reinforced 
learning approach.32 In supervised learning, ML training is 
performed using labeled datasets. Using a trial and error 
method, the ML algorithm learns to recognize the correct 
data trait necessary for the desired task. Unsupervised 
learning, in contrast, relies on the ML algorithm analyzing 
unlabeled data and categorizing the data according to 
inherent traits discovered within the training. Reinforced 
learning represents a hybrid approach, which relies on using 
both labeled and unlabeled data for training.

Contemporary ML algorithms have demonstrated func-
tional capacity to equal that of human for tasks of image 
recognition and at times have even exceeded it.26 This has 
motivated clinical application of this technology with ML 
algorithms being developed to automate numerous medical 
tasks, such as the reading of ECGs, the interpretation of 
radiological images and the diagnosis of skin lesions.28 33 34 
The aim of this manuscript is to perform a comprehensive 
literature review and evaluate the potential application of 
such ML algorithm for the diagnosis of ear disease from 
otoscopic image analysis.

METHODS
Search strategy
A literature search was conducted using PubMed (1953–
2020), EMBASE (1974–2010), CINAHL (1982–2020), 
PsycINFO (1887–2020) and Web of Science (1945–2020), 
using the search strings: (Artificial Intelligence) AND (Ear 
Disease).

Study selection
After removing duplicated cases, the search results were 
imported into a reference management tool (Zotero, 
5.0.96). The first author screened all titles and abstract. 
Inclusion criteria were titles and/or abstract containing the 
words “Artificial Intelligence” and terms related to “Middle 
or External Ear Disease”. The exclusion criterion included 
were non- English language, not peer reviewed, not using 
image analysis from clinical examination, or articles not 
presenting primary data. The references of all included 

articles were inspected for any relevant citations not discov-
ered with our search strategy.

Data extraction and quality assessment
Data extraction and quality assessment was performed in 
accordance with Lou et al. Guidelines for developing and 
reporting ML predictive models in biomedical research: a 
multidisciplinary view.35 Full and comprehensive review 
was sequentially completed by authors JHC and WW of all 
articles meeting criteria for inclusion.

Data synthesis and analysis
Each article was summarized in a Microsoft Word table 
detailing article type, data input, ML design, diagnosis 
used, image capture device, training of and number of 
image annotators, image pixel size, size of training dataset, 
reported diagnostic performance and area under the 
receiver operating characteristic curve (AUROC). The ad 
hoc nature of reported outcomes prevented further analysis 
beyond description.

RESULTS
The literature search strategy yielded 1862 citations, of 
which 9 manuscripts were eligible for review (figure 1). All 
included manuscripts detail the development of AI algo-
rithms with the capacity to diagnose ear disease from a 
single photographic image without needing external input. 
The disease processes that the algorithms were trained to 
diagnose varied considerably between groups (table 1).

Selection of AI method
ML, a class of AI algorithms, was used in the development 
of all nine diagnostic algorithms.36–44 Of the nine algo-
rithms, six were developed using a form of ML known as 
Deep Neural Networks.36 38–42 The remaining three algo-
rithms were developed using a variety of commonly used 
forms of ML models (Support Vector Machine, k- Nearest 
Neighbor and Decision Trees).37 43 44

AI algorithm training
All algorithms were trained using a similar method which 
necessitates the creation of image databases. Database 
images consisted of representative images of the chosen 
trait and have been annotated as being that diagnosis. 
Multiple strategies were applied for image collection, with 
five of the groups collecting these data in a prospective 
fashion36–38 40 44 and three relying on previously established 
image databases.41–43 One group relied entirely on images 
from Google Image search to create their database while 
Livingstone and Chau supplemented their database with 
images collected from Google Search and Textbooks.38 39 
A variety of devices including digital otoscopes and endo-
scopes were used for image capture (table 1). Image size 
was stated in four manuscripts, and ranged from 224×224 
pixels to 486×486 pixels.36 37 42 44 Annotation of training 
data was performed by ear specialists, which was defined 
consistently as being an otolaryngologist or an otologist.36–44 
A cohort consisting of two ear specialists was used in seven 
manuscripts and image inclusion to the database required 
diagnostic agreement by both ear specialist.36 38–41 43 44 In 
the remaining two manuscripts, annotation was performed 
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by a single otolaryngologist.37 42 The size of the database 
used for training varied between manuscripts ranging from 
183 to 8435 images.39 42

AI algorithm testing
In eight of the manuscripts, a cohort of representative, non- 
annotated images were reserved for testing and not included 
in algorithm training.36–38 40–44 The cohort of images was 
independently presented for inference of diagnosis by both 
the AI algorithms and the same cohort of ear specialists 
used to annotate the training data (see table 1 for list of 
diagnosis used within each manuscript). The AI algorithm’s 
diagnostic performance was then rated by comparing the 
algorithms inferred diagnostic results with those of the ear 
specialist. Using this methodology, the diagnostic accuracy 
performance of the eight ML algorithms was reported for 
a variety of trained diagnosis ranging between 80.6% and 
98.7%.41 44 There was considerable variation in the sensi-
tivity (recall) and the positive predictive value (precision) 
among the algorithms for their selected diagnosis, which 
ranged between 50.0%–100% and 14.3%–100%, respec-
tively.38 Of these eight algorithms, the AUROC score was 
reported in four and ranged between 0.91 and 1.0.37 43

Habib et al tested their AI algorithm using an image data-
base that was not used during training. Despite the variation 
in image quality between the images used in training and 
those used for testing the algorithm achieved a diagnostic 
accuracy performance average of 76% with an AUROC of 
0.86.39

AI algorithm comparison with non-ear specialist
Two manuscripts further tested their AI by comparing the 
diagnostic performance of the algorithm in comparison to 
a cohort of non- ear specialist clinicians. Both manuscripts 
report their AI algorithm’s as surpassing the diagnostic 
performance of the non- ear specialist cohort (table 2).36 38

Using a different approach, Myburgh et al created a 
rudimentary but cost- effective video- otoscope that was 
deployed with an experienced general practitioner to trial 
during routine shifts in a South African emergency room. 
Captured images from this device were then transferred for 
independent analysis by a computer with the AI algorithm. 
The results of the algorithms were then compared with the 
correct result, which the group defined as the diagnosis 
inferred by the general practitioner. In this small pilot study, 
the diagnostic accuracy of the AI algorithm was determined 
to be 78.7%.44

DISCUSSION
In this review, we identified nine manuscripts that provide 
small proof- of- concept studies for the application of ML 
algorithms in the diagnosis of ear disease from an image 
captured during an otoscopic exam. The study designs of 
the manuscripts however largely fail to demonstrate mean-
ingful performance validation of the ML algorithms, and 
include a lack of comparison of the ML algorithms with 
current care standards in a clinical setting. Attempts to use 
this literature to contemplate the clinical potential of such 
ML algorithms are therefore significantly hampered by the 
paucity of details relating to pathways for scaling the tech-
nology. Furthermore, and perhaps more significantly there 
is a fundamental failure in providing a specific outline for 
how such technology will fit within the current model of 
healthcare delivery.

The manuscripts included in this review relied on an ML 
method to algorithm development and a supervised learning 
approach to training. In this approach, the algorithms were 
presented a group of annotated images depicting the pathog-
nomonic appearance of a specific diagnosis. To adhere to 
ML terminology, henceforth the term ‘domain’ will replace 
the word ‘diagnosis’ in a synonymous fashion. The term 
‘ground truth’ is often the nomenclature used to describe 

Figure 1 Flow chart of article selection from the literature search strategy.
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the labeled data used to train the algorithm to recognize a 
characteristic data pattern that occurs within the data that is 
specific to that domain. Once the ML algorithm is trained, 
it codes a computer program that provides a mathematical 
framework that enables computer systems to analyze previ-
ously unseen, non- labeled data. Running such a program 
enables computation either of the ‘presence’ or ‘absence’ 
of a trained domain in the case of a non- predictive model 
such as the Decision Tree, or the ‘statistical likelihood’ of 
a trained domain occurring within the data in case of a 
predictive model such as deep learning (DL). As demon-
strated in this review, despite ML algorithms coding for 
different mathematical frameworks the various designs can 
be trained to perform the same functional task. DL is the 
most contemporary form of ML, and represents the design 
most commonly selected by the included manuscripts. As 
such, this form of ML algorithm will be described in greater 
detail.

DL designs demonstrate a great capacity for discovering 
intrinsic patterns within structured data and can be used 
to directly analyze pixel intensity. Deploying a DL design 
(using a supervised learning approach to training) therefore 
enables the algorithm to simply be presented with the desired 
ground truth which in this case would consist of otoscopic 
images stratified and labeled according to a specific domain. 
Next, without external input, the algorithm performs image 
analysis, which enables it to discover intrinsic pixel patterns 
within the image, specific to that domain. The advantage 
of this is that it negates the previous requirement for ML 
developers to manually abstract a data pattern for the 
algorithm to use. For tasks relating to image recognition, 
one of the most common forms of DL deployed is called 
Convolutional Neural Networks (CNN).45 CNN performs 
image recognition tasks by extracting hierarchical features 
from images in segments termed, convolutional layers. The 
network is composed of learnable parameters (eg, filters 
in the convolutional layers) that are developed during 
training with labeled data. Once trained, the accuracy of 
the algorithm is further refined by presenting unlabeled 
training data and adding weights within the model that 
serve to increase the likelihood of the algorithm conferring 
the correct diagnosis.46 The development of these models, 
therefore, requires a large quantity of data. A further disad-
vantage of DL models is that training and refinement can 
be technically challenging. Within training data, there are 
multiple millions of trainable parameters, presenting signif-
icant challenges for a developer to know whether the algo-
rithm is using the optimal parameter within the data. There 
is also a need to balance the number of convolutional layers 

used with the targeted algorithm performance. For example, 
with a properly engineered structure, a larger number of 
convolutional layers can potentially improve the prediction 
accuracy and increase the training and processing time for 
images because more computation is necessary. More tradi-
tional ML algorithm designs that were also included in this 
review provide ML developers with differing advantages 
and disadvantages as outlined in table 3.

The selection of an ML algorithm design depends on a 
multitude of factors including the data being used (format, 
complexity and quantity), the planned approach to training, 
and most importantly, the algorithm’s performance accu-
racy in predicting the desired outcome.45

The diagnostic performance data in a controlled setting 
was provided by all the included manuscripts. Study design 
for algorithm testing was uniformed across manuscripts 
with accuracy, precision and recall being determined by 
comparing domain prediction of the ML algorithm (for 
previously unseen and unlabeled images) against those 
domains provided for the same images by a cohort of ear 
specialists. It should be noted that in all groups the cohort 
of ear specialists was the same for both algorithm training 
and testing. Using these performance metrics, the ML 
models demonstrated a high level of diagnostic accuracy 
(76%–95%), precision (83%–95%) and recall (79%–95%) 
for certain trained domains (table 1). In the process of devel-
oping their algorithm, Viscaino et al noted that the trial of 
three different ML algorithm designs, with Support Vector 
Machine and k- Nearest Neighbor demonstrated superior 
performance compared with that of the Decision Tree clas-
sification.37 Five of the included manuscripts also reported 
AUROC scores. An AUROC score serves to chracterize 
the ML algorithm’s capacity to distinguish between a non- 
disease state and a disease state under tradeoff between 
sensitivity and specificity using different decision thresh-
olds. The AUROC scores reported in this review range 
between 0.86 and 0.99. The closer an AUROC score is to 
1.00, the greater the discriminatory ability the ML algo-
rithm has, with 1.0 meaning that the algorithm is able to 
reach 1.0 sensitivity and 1.0 specificity at the same time.37 39 
Performance comparison between the nine diagnostic ML 
algorithms is inappropriate given that each was developed 
using different data quality and diagnosis selection. As a 
result, each of the ML algorithms should be considered as 
performing a function unique to itself, which will differ in 
the level of complexity relative to the function of the other 
included ML algorithms. In addition to algorithm testing 
data, two manuscripts compared the diagnostic perfor-
mance of non- ear specialists with their ML algorithms in a 

Table 2 Diagnostic performance of non- ear specialist versus machine learning (ML) algorithm36 38

Study Clinician cohort (n) Non- ear specialist diagnostic performance ML algorithm diagnostic performance

Khan et al36 Specialists (7)*
Residents (6)*
Interns (4)*

74.0% 87.0%

Livingstone and 
Chau38

Otolaryngology residents (5)
Pediatric medicine resident (1)
Internal medicine resident (1)
Emergency medicine resident (1)
General practitioners (2)

58.9% 88.7%

*No further detail provided in manuscript.
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non- clinical setting. This was accomplished in both manu-
scripts by comparing both the non- ear specialist group’s and 
algorithm’s diagnostic inference from otoscopic captured 
images with that of an ear specialist cohort who served 
as the control. Both manuscripts report that the ML algo-
rithm diagnostic inference outperforms that of the non- ear 
specialist group.36 37 Caution, however, is needed in the 
interpretation of these findings, as the design of the study 
was suboptimal due to it being performed in a non- clinical 
setting, and with a reliance on small sample size and incom-
plete data. Furthermore, the non- specialist cohorts demon-
strated significant variation in the level of both training and 
experience resulting in considerable data spread.

On review of the reported testing data, an argument 
could be made that there is literature to support that these 
ML algorithms already demonstrate the capacity to outper-
form the diagnostic efforts of a non- specialist. In particular, 
Pitchichero et al investigated the diagnostic accuracy of pedi-
atricians and general practitioners for a normal ear exam, 
acute otitis media or otitis media with effusion after viewing 
an otoscopic exam video. This study found a fair diagnostic 
accuracy of 51% (±11) and 46% (±21) for pediatricians 
and general practitioners, respectively.3 When comparing 
this with the reported diagnostic performance of the ML 
algorithms trained to recognize these three diagnoses, the 
results (78%–95%) surpass those of both pediatricians and 
general practitioners.36 38 43 44 The validity of this argument 
is uncertain however as the study by Pitchichero et al and 
the ML algorithms were performed in controlled settings 
that are unlikely to be encountered in clinical practice. 
Furthermore, the success of an ML algorithm is dependent 
on many factors in addition to diagnostic performance. 
This is clearly demonstrated when considering that despite 
generating considerable excitement within healthcare and 
the widespread, rapid emergence of increasingly accurate 
ML algorithms, the clinical adoption of such technology has 
not occurred at nearly the same pace.47 48

One of the large challenges with developing ML algo-
rithms is the process of scaling the technology beyond the 
laboratory. As previously described, the functionality of an 
ML algorithm is dependent on adherence to a predefined 
model. The models are fitted during the training of the ML 
algorithm and enable inference of specific domains once 
deployed. Hence, meticulous attention and foresight is 
therefore required at this stage to ensure that the character-
istics patterns used for the training of the ML algorithm are 
universally agreed on as being representative of the selected 
chosen domain and that the characteristics patterns are 
representative of the selected diagnosis typically encoun-
tered in the clinical setting.49 As well as not detailing a 
pathway to scaling, the non- standardization approach 
to data collection and the methodology employed by the 
reviewed studies also increase the risk of the reported ML 
algorithm demonstrating limited widespread applicability. 
In addition, scaling this technology beyond the laboratory 
is likely to face further challenges during deployment if 
the data used for algorithm training are not of comparable 
quality with that captured in a clinical setting. Given that 
ML algorithms rely on the characteristics of the elements 
that make up an image (pixels) to infer a diagnosis, any 
change due to variation in image captures such as using a 
different image capturing system or variable image capture 
settings, will adversely impact the algorithm’s performance. 
This could represent considerable challenges to the ability to 
scale this ML algorithm- based technology given that a large 
percentage of clinicians remain without access to digital 
otoscopes, and if digital otoscopes are being used there is 
still the inherent risk of variation in image acquisition and 
quality, which would confound diagnostic accuracy.

Beyond functionality and challenges of technological 
scalability, perhaps the more fundamental, unanswered 
question that remains is how such technology will inte-
grate with the current healthcare delivery model. To 
date, a common crux within AI development is related to 

Table 3 Basic principle and comparison of included machine learning (ML) model design

ML model Basic principle Advantage Disadvantage

Convolutional Neural
Networks

Performs data recognition by extracting 
hierarchical features from data with 
convolutional layers. The network is composed of 
trained parameters that are learnt from labeled 
data.

1. No input abstraction required
2. Applied directly to pixels

1. Requires large amount of data
2. Complex to training and refine
3. Millions of trainable data 

parameters

Decision Tree classification Relies on a branching structure where each 
branch (node), in a binary fashion, directs to a 
specific outcome (leaf).

1. Normalization or scaling of data 
non- needed

2. No considerable impact of missing 
values

3. Easy to explain and visualize

1. Quickly becomes overly complex 
with multiple domains

2. Challenging to manage data outliers

k- Nearest
Neighbor

Determine the distance between plotted 
unlabeled data relative to labeled data. The 
unlabeled data are classified to share the domain 
of the nearest labeled neighboring data.

1. Very simple
2. No assumption about data
3. Can solve multidomain problems

1. Cumbersome on large datasets
2. Suboptimal for datasets with a large 

number of domains
3. Sensitive to data outliers

Support Vector Machine Labeled data are plotted with each domain being 
represented by a particular set of coordinates. The 
algorithm then calculates optimal hyperplanes, 
which function as lines that best separate the 
domains. Then depending on the laterality 
unlabeled data fall relatively to this line serves to 
determine the domain the data are classified as 
representing.

1. Perform well with multiple different 
data domains present

2. Data outliers have little impact on 
performance

1. For large dataset, requires a 
significant amount of processing 
time

2. Poor performance if domains 
overlap is present

3. Training can be challenging
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innovation, which remains outside of the core processes 
that drive care delivery.48 50 For example, it remains to be 
determined whether the relatively poor diagnostic accuracy 
and excessive antibiotic prescribing practices are important 
enough to practitioners to motivate widespread adoption of 
this emerging technology and investment of the associated 
monetary costs.51 There is also a need to better understand 
any objective factors that influence why clinicians make 
decisions as this will also impact the value of this tech-
nology. For example, if clinicians, in part, prescribe anti-
biotics due to the expectation of a concerned parent, then 
it is unlikely that this practice will change even if this tech-
nology is implemented. The recent trend towards telemed-
icine is also likely to present uncertainty for the successful 
implementation of this technology, as this will require ear 
exams to be performed by either a parent or guardian.

Several limitations of this review should be considered. 
First, the manuscripts included in this review use rela-
tively small sample sizes, ad hoc methodology and variable 
outcomes, which limit the ability to generalize findings. 
Second, as highlighted above, the performance of the algo-
rithms is specific to a controlled setting and might not 
represent actual clinical performance. Third, the method by 
which such technology can be clinically deployed is influ-
enced by a number of variable factors, and the role of AI 
diagnostic tools within the current healthcare workflow 
remains unknown.

CONCLUSION
The current literature provides some proof of evidence 
supporting the capacity of AI to diagnose ear disease with 
otoscope image analysis. This work, however, remains in its 
infancy, and there is a need for well- designed prospective 
clinical studies before the potential of such AI technology 
can fully be elucidated.
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