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Dear Editor,
I read the article ‘Prospective predictive 

performance comparison between clinical 
gestalt and validated COVID-19 mortality 
scores’ with great interest.1 The authors 
compared various COVID-19 mortality predic-
tion models validated in Mexican patients — 
LOW-HARM, MSL-COVID-19, Nutri-CoV, 
and neutrophil-to-lymphocyte ratio (NLR) —, 
qSOFA, and NEWS2 against clinical gestalt to 
predict mortality among COVID-19 patients 
admitted to a tertiary hospital, concluding that 
clinical gestalt was non-inferior. I would like to 
comment on some issues with this article.

It is unclear what “clinical gestalt” meant 
in the study since no formal definition was 
provided by the authors other than study proce-
dures. Others have defined clinical gestalt as 
“a physician’s unstructured estimate”2 or an 
“overall clinical impression”.3

Additionally, it is not clear how the authors 
selected the prediction models to be evalu-
ated. They mentioned that three models vali-
dated in datasets including Mexican patients 
were included; however, in the absence of 
clear inclusion criteria, other models validated 
in Mexican patients could have been left out. 
Thus, I performed a systematic search within 

Figure 1  Systematic search flowchart of studies included and reasons for exclusion. The search within COAPa 
was performed by using the keywords and Boolean operators (mortality) AND (mexico) OR (mexican). Within 
LILACSb, the keywords and Boolean operators (COVID-19) AND (mortality) AND (mexico) OR (mexican) were 
used; an affiliation country filter for “Mexico” was also applied in the latter case. These searches retrieved 778 
records (610 and 168, respectively), of which 193 studies were retained for abstract and full-text screening. 
Nine studies describing 17 validated COVID-19 mortality prediction models within the Mexican population 
were identified. aCOAP is a daily-updated database with SARS-CoV-2 and COVID-19 published articles from 
PubMed, EMBASE and PsycINFO, and preprints from medRxiv and bioRxiv (further information at https://
ispmbern.github.io/covid-19/living-review/). bLILACS is one of the most important and comprehensive 
databases of scientific information in Latin America and the Caribbean with more than 880 thousand records 
of peer-reviewed journals, thesis and dissertations, government documents, annals of congresses and books 
(further information at https://lilacs.bvsalud.org/en/).

 on A
pril 18, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2021-002243 on 5 January 2022. D
ow

nloaded from
 

http://jim.bmj.com/
http://orcid.org/0000-0002-1712-8401
http://crossmark.crossref.org/
http://dx.doi.org/10.1136/jim-2021-002037
http://dx.doi.org/10.1136/jim-2021-002037
https://ispmbern.github.io/covid-19/living-review/
https://ispmbern.github.io/covid-19/living-review/
https://lilacs.bvsalud.org/en/


2 Meza-Comparán HD. J Investig Med 2022;0:1–3. doi:10.1136/jim-2021-002243

Letter to the editor

the COAP search engine and LILACS of studies published 
to November 5, 2021 (figure  1). Nine studies describing 
17 validated COVID-19 mortality prediction models within 
the Mexican population were identified (table 1),4–12 four 
of which were evaluated by Soto-Mota and colleagues 
(LOW-HARM, MSL-COVID-19, Nutri-CoV, and NLR).4 7 
Therefore, the authors did not evaluate a number of the 
important prediction models validated in Mexican patients 
to predict mortality.

Although the authors mentioned the median years of 
hospital experience (which could include medical intern-
ship and social service in Mexico) in medical residents 
who performed predictions, disclosing their corresponding 
postgraduate year (PGY) would have been important, since 
confidence of predictions was generally low in this study 
— only ~35% had >80% confidence of prediction. While 
they argued that “with the COVID-19 pandemic, clinicians 
of all levels of training started their learning curve at the 
same time”, senior residents are less likely to be under-
confident compared with junior residents.13

Furthermore, the statement “no score was significantly 
better than clinical gestalt predictions” might be question-
able, due to concerns regarding sample size. An inadequate 
sample size could have led to the inability to detect differ-
ences, especially since the authors used easyROC — an 
open web calculator that estimates, among others, sample 
sizes for non-inferior ROC comparisons — to estimate the 
sample size for their study. Of note, easyROC requires an 
input for the “smallest difference” between tests’ AUC, not 
the “maximal AUC difference” as the authors report. Most 

important is the fact that easyROC was not developed to 
estimate sample sizes to evaluate non-inferiority between 
prognostic predictive models; instead, it was developed to 
compare diagnostic test models.14

Finally, it is worthwhile mentioning that while in 
younger patients obesity is the strongest risk factor for 
short-term mortality,15 chronological age remains the 
single most important predictor of in-hospital COVID-19 
mortality.9

Twitter Héctor David Meza-Comparán @HectorMezaMD
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Table 1  COVID-19 mortality prediction models validated in Mexican patients, identified through the systematic search.

Model or authors Predictors

Reference of 
validation 
study

CALL score Comorbidities, age, lymphocyte count, LDH 4

Charlson Comorbidity Index (CCI) Age, MI, CHF, PVD, CVA or TIA, dementia, COPD, connective tissue disease, PUD, liver disease, DM, hemiplegia, 
moderate to severe CKD, solid tumor, leukemia, lymphoma, AIDS

4

HScore Immunosuppression, body temperature, organomegaly, cytopenias, ferritin, triglycerides, fibrinogen, AST, features of 
hemophagocytosis in bone marrow aspirate

4

Inflammation-based risk scoring system Albumin, hs-CRP, WBC 4

Karaismailoglu et al Age, pneumonia, CKD, COPD, DM 8

Kimura-Sandoval et al Percentage of total opacity >51% in non-contrast chest CT, LDH 10

LOW-HARM score Lymphopenia, SpO2, WBC, HTN, age, renal injury, myocardial injury 4

NLR Absolute neutrophil count divided by absolute lymphocyte count 4

Nutri-CoV score MSL-COVID-19 score, SpO2, RR 7

Obesity and diabetes score (MSL-
COVID-19)

Pneumonia, DM, DM and age <40 years, age ≥65 years, age <40 years, CKD, immunosuppression, COPD, obesity 4

ODL-COVID CD8+ T lymphocyte count, D-dimer, LDH, CRP, HTN, DM 5

PH-Covid19 score Age, sex, DM, COPD, immunosuppression, HTN, obesity, CKD 4, 9

PhenoAge components Albumin, creatinine, CRP, CA 12

PhenoAgeAccel+CA PhenoAgeAccel value, CA 12

Quiroz-Juárez et al DM, COPD, immunosuppressive drugs, HTN, CKD, CVD, obesity, presence of other chronic illnesses, sex, state of birth 
(Mexico), state of residence (Mexico), age, units of viral respiratory diseases (USMER) designation, sector (medical 
facility), state of treatment (Mexico), days symptoms-treatment, COVID-19 status, COVID-19-related pneumonia, 
hospitalization status, intubation, ICU

6

Wollenstein-Betech et al Age, sex, immunosuppression, CKD, obesity, DM 11

Wollenstein-Betech et al (extended 
model)

Age, sex, immunosuppression, CKD, obesity, DM, hospitalization, pneumonia, need for ICU or ventilator 11

AIDS, acquired immune deficiency syndrome; AST, aspartate aminotransferase; CA, chronological age; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic 
obstructive pulmonary disease; CRP, C-reactive protein; CT, computed tomography; CVA, cerebrovascular accident; CVD, cardiovascular diseases; DM, diabetes mellitus; hs-CRP, high-
sensitivity C-reactive protein; HTN, hypertension; ICU, intensive care unit; LDH, lactate dehydrogenase; MI, myocardial infarction; NLR, neutrophil-to-lymphocyte ratio; PUD, peptic 
ulcer disease; PVD, peripheral vascular disease; RR, respiratory rate; SpO2, peripheral oxygen saturation; TIA, transient ischemic attack; WBC, white blood cell count.
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