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ABSTRACT
The prolactin hormone (PRL) is often secreted by 
lactotrophic cells of the anterior pituitary and has 
been shown to play a role in various biological 
processes, including breast feeding and reproduction. 
The predominant form of this hormone is the 23 
kDa form and acts through its receptor (PRLR) on 
the cell membrane. This receptor is a member of the 
superfamily of hematopoietic/cytokine receptors. 
PRL also has a 16 kDa subunit with anti-angiogenic, 
proapoptotic, and anti-inflammatory effects which 
is produced by the proteolytic breakdown of this 
hormone under oxidative stress. Although the 
common side effects of hyperprolactinemia are 
exerted on the reproductive system, new studies 
have shown that hyperprolactinemia has a wide 
variety of effects, including playing a role in the 
development of autoimmune diseases and increasing 
the risk of cardiovascular disease, peripartum 
cardiomyopathy, and diabetes among others. 
The range of PRL functions is increasing with the 
discovery of multiple sites of PRL secretion as well 
as PRLR expression in various tissues. This review 
summarizes current knowledge of the biology of PRL 
and its receptor, as well as the role of PRL in human 
pathophysiology.

INTRODUCTION
Prolactin (PRL) is a polypeptide hormone that 
is mostly synthesized and secreted by lactotroph 
cells of the anterior pituitary gland and is 
mainly inhibited by dopamine released by the 
hypothalamus.1 2 Although pituitary lactotrophs 
are the most important producers of PRL, 
extrapituitary tissues, such as the brain, breast, 
prostate, uterine decidualized endometrium, 
adipocytes, lymphocytes, skin, etc, also produce 
this hormone.3 4

Two promoter regions, which are indepen-
dent of each other, are responsible for the PRL 
gene transcription. One of them is proximal or 
downstream which is responsible for the direc-
tion of pituitary-specific expression and the 
other is distal or upstream and directs the extra-
pituitary expression.5

In humans, the principal PRL-related symp-
toms, such as hypogonadism and infertility, 
result from the hypersecretion of this hormone, 
and its low level is not a common complication 
and has no specific side effects.6 This may be 

due to the production of PRL outside the pitu-
itary gland and probably pituitary hyperprolac-
tinemia.7 On the other hand, these side effects 
may be prevented by lowering the PRL levels.8 
Although many aspects of hyperprolactinemia 
have been revealed over the past decades, 
recently new functions have been discovered 
for PRL and its receptor, such as the role of 
hyperprolactinemia in the incidence and recur-
rence of autoimmune diseases,9 cardiovascular 
diseases (CVDs),10 impaired metabolism of 
glucose and lipids,11 hypertension,12 etc.

Therefore, the present review aimed to focus 
on the latest findings on hyperprolactinemia, 
especially complications other than the ones 
affecting the reproductive system.

PRL GENETICS
In humans, the PRL gene has five coding exons; 
four introns and one non-coding exon in the 
chromosome 6p22.2-p21.3. The prohormone 
contains 227 amino acids, is transcribed from a 
914-nucleotide area, and its encoding messenger 
RNA (mRNA) contains a 681-nucleotide open 
reading frame.13 In the rough endoplasmic 
reticulum (RER), 28 amino acids of pre-PRL, 
known as the signal peptide, are proteolytically 
cleaved and the mature 199-amino acid PRL 
polypeptide with a molecular weight of 23 kDa 
is released.14

For the transcription of the hPRL gene, there 
are two promoter regions that are not depen-
dent on each other. One of them is proximal or 
downstream and is responsible for the direction 
of pituitary-specific expression and the other is 
distal or upstream and directs the extrapituitary 
expression.15

Pituitary lactotrophs are the most important 
producers of PRL, but extrapituitary tissues, 
such as the brain, breast, prostate, uterine decid-
ualized endometrium, adipocytes, lymphocytes, 
skin, etc, produce it as well.13 In these tissues, 
there is a promoter named the superdistal PRL 
promoter located  ~5.8 kb upstream of the 
pituitary transcription outset point that tran-
scribes PRL mRNA exon 1a, which is an addi-
tional exon.16 POU homeodomain transcription 
factor is another protein that plays a key role in 
regulating the expression of growth hormone, 
PRL, and thyroid-stimulating hormone β in 
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somatotrophs, lactotrophs, and thyrotrophs, respectively, 
specifically in the anterior pituitary.17 18

Pit-1 is the main transcription factor for hPRL and 
following a signaling pathway, it can recruit many regula-
tory and nuclear receptor factors such as Ets, Oct1, ER, 
c-Jun, GR, TR, Ptx-1, GATA2, basic region-leucine zipper 
(B-Zip) transcription factors, and P-Lim to Pit-1 regulated 
promoters, and by modifying histone acetylation it can 
induce or repress the transcription.19 20 Pit-1 is composed of 
two motifs including the DNA-binding domain (DBD) in the 
carboxy-terminal and the transcriptional activator domain 
(TAD) in the amino-terminal. TAD has a region that is basal 
and a Ras-responsive region.21 DBD has two motifs that are 
essential for the facilitation of DNA binding.22 In rats, the 
determinative factor for being a dimer or a monomer is the 
balance between the corepressor and coactivator agents.23 24 
Moreover, the phosphorylation of Pit-1 by protein kinase 
A, protein kinase C (PKC), and cyclin-dependent kinases 
inhibits its binding to DNA and leads to the reduction of its 
transcriptional activity.25

One of the most important physiological factors in 
the activation of PRL gene expression is estrogen. It acts 
through estrogen receptors (ERs), three of which have 
been identified so far. These receptors include ERα, ERβ, 
and G protein-coupled estrogen receptor 1 (also known as 
G protein-coupled receptor 30); the first two are nuclear 
receptors and the third is a transmembrane receptor and 
binds to estradiol (E2).26–28 Approximately within the distal 
rat PRL enhancer, there is an estrogen response element 
(ERE) near the monomeric Pit-1d site at about 1.5 kb 
upstream of the transcription initiation point. In humans, 
the affinity of hPRL ERE for ERα, when stimulated with 
E2, is relatively low, but when E2 is accompanied by tumor 
necrosis factor-α, the affinity is elevated and transcriptional 
activity becomes higher.29 30 Moreover, other transcription 
factors also play a role in regulating the PRL promoter, such 
as SMAD4, Pitx factors, CCAAT/enhancer-binding protein 
(C/EBPα), Ikaros, and thyroid hormone receptor.31 32

PRL SIGNALING PATHWAYS
PRL gene expression is dependent on several major agents 
including neurotransmitters (serotonin and acetylcholine), 
hormones, and growth factors and also several pathways 
such as G-protein-coupled receptor (GPCR) and receptor 
tyrosine kinase pathways. These agents and pathways ulti-
mately induce or suppress the transcription by impacting 
the PRL promoter.33 34

The PKC-dependent pathway is another signaling 
pathway regulated by epidermal growth factor and 
thyrotropin-releasing hormone (TRH), and insulin can 
phosphorylate the cAMP response element-binding protein 
(CREB) and then recruit Pit-1 and subsequently could regu-
late the PRL gene. Insulin by inducing phosphoinositide 3 
kinase (PI3K)-Akt phosphorylates CREB and through an 
interaction with an E26 family member, it probably regu-
lates PRL promoter activity. On the other hand, there is 
an extracellular signaling pathway to regulate the PRL gene 
through kinase-1/2 (Erk-1/2), which is stimulated by several 
factors including pituitary adenylyl cyclase-activating 
polypeptide (PACAP), fibroblast growth factor 2 (FGF2), 
vasoactive intestinal peptide (VIP), and insulin-like growth 

factor 1 (IGF-1) using monomeric G-proteins to initiate 
a signal. For the stimulation of the PRL gene expression, 
VIP and IGF-1 use the Raf/Erk/Ets route, PACAP signals 
through the Rap1/Braf/Erk cascade, and FGF2 acts through 
Rac-1/phospholipase C/PKC/Erk.35 36

Moreover, in vitro studies have shown that there are 
some crosstalk signaling pathways involved in controlling 
the PRL gene expression, such as estradiol and bone 
morphogenetic protein 4 dependent on Smad-1 and inde-
pendent of EREs, as well as transforming growth factor-β 
that suppresses this action and inhibits PRL transcription.37 
Also, epidermal growth factor receptor and ERα are both 
involved in activating PRL expression. In addition, ERα 
elevates the hPRL expression through nuclear factor kappa 
B signaling.38 Nevertheless, further investigations are 
needed to confirm these signaling behaviors in the hPRL 
gene expression.39

STRUCTURE OF PRL
A mature hPRL protein has 199 amino acids.40 Among 
different species, primate PRL has the highest homology 
with hPRL, and it is shown that rat PRL can induce the 
human prolactin receptor (PRLR) unlike the mouse 
PRL.41 42 The 199-aa PRL is a single-chain polypeptide with 
three intrachain disulfide bonds, has a secondary structure 
with four antiparallel α-helices, and is similar to the growth 
hormone.43

To become active, PRL must undergo post-translational 
changes such as proteolytic degradation, phosphory-
lation, and glycosylation and these modifications are 
the determining factors for PRL biological activity.32 
It is shown that in the human pituitary, there are non-
phosphorylated, monophosphorylated, and diphosphor-
ylated forms of PRL in a relatively wide range of 62%, 
19%, and 19%, respectively, and Ser-163 and 194 are 
responsible for this phosphorylations.44 45 Based on 
previous studies, the role of phospho-PRL is probably 
reducing the power of the unphosphorylated form in 
proliferative action.46 47 Hence, the phospho-PRL to non-
phospho-PRL ratio changes in some physiological situ-
ations such as pregnancy or estrous cycle, representing 
the significant role of this ratio in various situations.48 49 
N-glycosylation of PRL on N31 could induce low affinity 
to receptor binding and decrease its biological role.50 
Hyperprolactinemia in unexplained forms may be due to 
the increase of glycosylated PRL.51

The proteolysis of 23 kDa PRL isoform can generate some 
variants with different actions. For example, the 16 kDa 
form in the adjacency of the capillary blood of the inter-
stitial medium is probably responsible for some antiangio-
genic activity via binding to endothelial cells; therefore, the 
16 kDa PRL is a prominent vasoinhibin factor.51 Addition-
ally, it has been shown that the 22 kDa and 16 kDa isoforms 
produced by kallikrein and cathepsin D, respectively, may 
be essential in non-reproductive functions. Hence, there is 
a category of PRL isoforms in the bloodstream as shown in 
table 1.51 There are also two more isoforms of PRL with 
unknown biological roles. The first is big PRL (molecular 
weight 48–56 kDa) and the second is macroprolactin, also 
known as big-big PRL with a molecular weight over 100 
kDa.52 53
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PRLR STRUCTURE AND SIGNAL TRANSDUCTION
The PRLR is a transmembrane protein and a member of 
the cytokine-1 receptor superfamily and its gene is located 
on chromosome 5 (5p13.2) and has 15 exons, 8–9 coding 
and 2 non-coding.54 Its extracellular domain has four Cys 
residues forming two disulfide bridges that are necessary 
for binding the ligand to the receptor as well as for tertiary 
folding. In the extracellular domain, there is a second 
signature domain with a motif that has a repetitive Trp-
Ser tandem and an interrupter amino acid between them 
(WSXWSX…). Following the binding of the ligand to the 
extracellular domain, the intracellular domain, which has 
a box 1 elaborate motif with an 8-amino acid proline-rich 
region, is directly linked to the tyrosine kinase, and the 
signaling pathway starts.55 56 It has been reported that in 
PRLR, there is a distal tyrosine that is very important and 
has a major role in the signaling of tyrosine kinase since it has 
been shown that in rats with a large deletion of amino acids 
between the distal tyrosine and proline rich-region(box 1 
elaborate motif), the signaling is not interrupted.57

In summary, signal transduction needs the Janus kinase and 
signal transducer and activator of transcription (JAK-STAT) 
kinase pathway; after the binding of PRL to PRLR, JAK 
kinase phosphorylates STAT-5. Then STAT-5 is dimerized 
and interacts with Src homology 2 (SH2) domains, creating 
dimeric STAT complexes which are imported into the 
nucleus where the elements in the promoters of the PRL-
regulated genes such as interferon (IFN) γ-activated site 
exist and initiate the transcription of target genes.57 In the 
absence of PRL, JAK is dephosphorylated by phosphatase 
to keep the transcription of the target genes down and the 
signaling pathway blocked.39

PRL SECRETION
PRL can be secreted in specific periods such as pregnancy 
or by the placenta and has certain roles including changing 
the angiogenesis process, lymphocyte regulation, and hema-
topoietic functions.58 PRL levels are enhanced in maternal 
blood due to pituitary secretion and it has previously been 
shown that the pituitary becomes enlarged due to this secre-
tion.59 Furthermore, the concentration of PRL in amniotic 
fluid is 10-fold to 100-fold higher than the fetal or maternal 
blood levels and this elevation may be due to the role of 
decidua PRL in controlling the epithelial cell differenti-
ation of uterine, angiogenesis, and the regulation of the 
immune response and trophoblast growth.60 Controlling 
the expression of decidua PRL is dependent on extrapitu-
itary promoters and the factors affecting that include tran-
scription factors, signaling peptides, and cytokines.61

The major regulator of PRL is the hypothalamus and 
the main pituitary inhibiting factor is dopamine.62 63 It is 
also shown that the GnRH-associated protein (GAP), a 

polypeptide with 56 amino acids located on the carboxy-
terminal region of the GnRH precursor, has an inhibitory 
effect on PRL secretion in rats, but it is unclear whether it 
has an inhibitory effect in humans or not.51 γ-Aminobutyr-
osineic acid (GABA) is another factor inhibiting PRL secre-
tion both in vitro and in vivo in rats. In humans, it is also 
described that the prescription of GABA or activating its 
secretion by Na valproate leads to the reduction of PRL 
secretion for several days.64 65

Furthermore, TRH is another factor that via binding to 
TRH receptor type I in lactotrophs and thyrotrophs leads 
to an increased release of PRL in the pituitary.66 Hence, it 
is shown that in human hypothyroidism, TRH and TRH 
receptors are increased, which leads to the increase of PRL. 
In contrast, in the hyperthyroidism state, the PRL levels are 
decelerated and after the treatment of hyperthyroidism, the 
PRL levels return to normal.67 There are also other factors 
that impact PRL secretion, which are not necessarily real 
PRL-releasing factors. For example, a dopamine antagonist 
has an indirect role in increasing the PRL secretion, while 
suckling is a real physiological state that directly leads to 
the increase of PRL.27 68 Other examples of these factors are 
VIP, galanin, PRL-releasing peptide, oxytocin, salsolinol, 
etc.68 Estrogen is another factor that slightly inhibits the 
dopamine effect. This is probably due to the fact that the 
PRL gene promoter has an ERE and also it is shown that 
estrogen can reduce the number of dopamine receptors in 
rats.69 As a result, it is now clear that most PRL-secretion 
stimulating factors are dopaminergic inhibitors. Previous 
studies have shown that PRL has a negative feedback on its 
own secretion, which is known as auto-feedback or short-
loop feedback.70 71 It is suggested that this feedback in mice 
and rats is mediated by tuberoinfundibular dopaminergic 
neurons in the hypothalamus.71–73 In some studies focused 
on understanding the autocrine or paracrine action of PRL, 
it has been demonstrated that when PRLR in lactotroph 
cells was deleted in mice, the level of PRL remained normal 
and there was no adenoma in pituitary lactotrophs, but 
compared with the normal group, the dopamine inhibitory 
action was increased; this supports the hypothesis that PRL 
has an autocrine/paracrine feedback on lactotroph cells.74 75

HYPERSECRETION OF PRL
PRL secretion is under the tonic inhibition of the hypo-
thalamus and the deficiency of this hormone is rare. It can, 
for example, be observed in Sheehan’s syndrome. Usually, 
disorders of PRL secretion lead to hyperprolactinemia.76

Fasting PRL levels >25 ng/mL in women and >20 ng/
mL in men are defined as hyperprolactinemia.77 Fetal PRL 
levels increase until birth but decrease to pre-pubertal levels 
at 2 months after birth.76 During breast feeding, the level 
of this hormone increases physiologically, but in various 

Table 1  The prolactin (PRL) isoforms, and their structures and roles

Isoform Structure Role

23 kDa (small prolactin) Monomeric, non-glycosylated, high receptor affinity The main form: biological and immunological

25 kDa glycosylated forms (G1 and G2) Carbohydrate unit chains are different Low immunoreactivity
(G2 is 75% more immunoreactive than G1)

50 kDa (big PRL) Combination of dimeric and trimeric glycosylated isoforms Unknown

100 kDa (big-big PRL) Probably a G-PRL Covalently binds to immunoglobulins
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diseases such as prolactinoma, hypothyroidism, and adrenal 
insufficiency, it also increases pathologically.78 Hyperpro-
lactinemia can be of physiological, pathological, pharmaco-
logical, or idiopathic origin. This disorder can have severe 
clinical symptoms or be completely asymptomatic.79 The 
prevalence of hyperprolactinemia in the adult population 
(male and female) is 0.4%, but women are more prone to 
hyperprolactinemia; therefore, in adult women with infer-
tility disorders, its prevalence is reported to be 17%–9%.79 80

CAUSES OF HYPERPROLACTINEMIA
Hyperprolactinemia can be due to physiological or patho-
logical reasons. Some of the major causes of this disorder 
include:
1.	 Physiological hypersecretion which is observed in con-

ditions such as pregnancy, lactation, chest wall stimula-
tion, sleep, and stress.18 50 71 81

2.	 Idiopathic hyperprolactinemia.82

3.	 Hypothalamic-pituitary stalk damage caused by tumors 
(craniopharyngioma, meningioma, dysgerminoma, der-
moid cyst, and pineal gland tumors), irradiation, trau-
ma, pituitary stalk section, and suprasellar surgery.79

4.	 Pituitary hypersecretion caused by prolactinoma (mi-
croadenoma and macroadenoma), metastatic tumors, 
acromegaly, infections such as tuberculosis, sarcoidosis, 
Cushing disease, and Addison’s disease.79

5.	 Systemic disorders including chronic renal failure, hy-
pothyroidism, ectopic production (hypernephroma, 
bronchogenic sarcoma), cirrhosis, pseudocyesis, and ep-
ileptic seizures.79

6.	 Drug-induced hypersecretion caused by dopamine re-
ceptor blocking agents, dopamine depleting agents, his-
tamine receptor antagonist, estrogens, anti-androgens, 
serotonin reuptake inhibitors, and calcium channel 
blockers.79 83

COMMON SIDE EFFECTS OF HYPERPROLACTINEMIA
Common side effects of hyperprolactinemia in children
In children, before puberty, hyperprolactinemia can lead 
to primary amenorrhea or delayed puberty that occurs by 
microprolactinomas and macroprolactinomas in one-fifth 
and three-fourth of children, respectively.84 85 Galactorrhea 
was reported in 27%–67% of children with microprolac-
tinomas and 51%–91% of children with macroprolacti-
nomas.86–88 Gynecomastia is one of the other manifestations 
in boys, but distinguishing it from normal prepubertal gyne-
comastia is difficult. Notably, headache in 40%–90% and 
visual disturbances in 15%–50% of macroprolactinoma 
cases are the major symptoms reported.86

Common side effects of hyperprolactinemia in women
Hyperprolactinaemia is a common cause of gonadal 
dysfunction, especially in women. Hyperprolactinemia 
suppresses the release of GnRH and then decreases lutein-
izing hormone pulse amplitude and frequency.89 More-
over, hyperprolactinemia could result in the decrease of 
estrogen positive feedback on gonadotropin secretion.90 
3-Beta-hydroxysteroid dehydrogenase type II and IGF-II 
production are influenced by PRL in ovarian granulosa 
cells.91 Its incidence in women with secondary amenorrhea 
is between 13% and 30%. Most people with hypogonadism 

due to pituitary tumors do not suffer from gonadotropin 
deficiency but from hyperprolactinemia. About 30% of 
people with hyperprolactinemia have galactorrhea.76

Hyperprolactinemia in women causes a range of symp-
toms from secondary amenorrhea or any menstrual irregu-
larities to a normal menstrual cycle.76

In women with amenorrhea, osteoporosis, which is caused 
by a lack of estrogen, is a common condition that requires 
medical examination. Bone mineral density decreases by 
25% in these individuals and may not be restored after 
normal PRL levels. Women with hyperprolactinemia 
sometimes show signs of chronic hyperandrogenism, such 
as hirsutism and acne. This is probably due to increased 
adrenal dehydroepiandrosterone sulfate secretion as well 
as decreased sex hormone-binding globulins resulting in 
increased free testosterone levels.76

Common side effects of hyperprolactinemia in men
The prevalence of hyperprolactinemia in men is lower 
than in women; however, it can cause hypogonadism in 
men. Galactorrhea is seen in 30% of cases. Sperm count 
and morphology are often normal.76 Other complications 
of hyperprolactinemia in men include erectile dysfunction, 
decreased libido, infertility, gynecomastia, and decreased 
bone mass, but rarely galactorrhea. Over time, the patient 
may exhibit diminished energy, reduced muscle mass, and 
increased risk of osteopenia.76

In addition to the effects of hyperprolactinemia on chil-
dren, women, and men, as summarized above, which are 
more about its effects on the reproductive system, recent 
studies have shown that hyperprolactinemia has several 
adverse effects on the human immune, endothelial, and 
cardiovascular systems, as well as diabetes, which are 
explained in the figure 1.

Hyperprolactinemia and autoimmunity
The prevalence of various autoimmune diseases varies 
between men and women, and there is a possibility that 
sex hormones may play a role in this difference.76 92 The 
prevalence of autoimmune diseases is higher among women 
of childbearing age and the recurrence of these diseases is 
seen during pregnancy and after childbirth. In fact, women 
have enhanced immune reactivity, larger antigen-presenting 
capability, mitogenic responses, increased antibody produc-
tion, higher immunoglobulin levels, and the ability to reject 
allografts more rapidly.9 93 The immune system and the 
neuroendocrine system have many connections. PRL has a 
stimulating effect on the immune system, such as inhibiting 

Figure 1  The common side effects of hyperprolactinemia on 
various systems.
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the negative selection of autoreactive B lymphocytes, which 
is effective in the development of autoimmunity. As a result, 
increased PRL levels are effective in the development of 
autoimmune diseases and their pathogenesis.94 95

According to studies over the past two decades, PRL can 
also be produced in extrapituitary tissues, including the 
ovaries, prostate, mammary glands, adipose tissue, brain, 
and immune cells. PRL has different biological activities 
when produced in extrapituitary tissues. On the other hand, 
PRL secretion is affected by some cytokines, including PRL-
stimulating cytokines, such as interleukin (IL)-1, IL-2, and 
IL-6, but endothelin-3 and IFN-γ play an inhibitory role in 
its secretion.96 97

The PRLR is a member of the type 1 cytokine receptor 
superfamily, which is expressed in various cells of the 
immune system, such as monocytes, macrophages, lympho-
cytes, natural killer cells, granulocytes, and thymus epithe-
lial cells. As a result, the binding of PRL to its receptor on 
the surface of these cells can have various effects including 
affecting their proliferation, differentiation, secretion, and 
survival.78 98 99 PRL controls the maturation of CD4− CD8− 
thymocytes into CD4+ CD8+ T cells through IL-2 receptor 
expression. A significant correlation was reported between 
PRL levels and B and CD4+ T lymphocyte counts. Hyper-
prolactinemia can cause B cell clonal degradation, destroy 
receptor editing, reduce B cell activation threshold, and 
cause an autoimmune reaction.95 Moreover, PRL is able to 
alter the production of T-helper (Th1 and Th2 cytokines, 
increase the production of IL-6 and INF-γ, and control IL-2 
levels. It also increases the production of immunoglobulins, 
stimulates antigen cells, which express the complexity of 
the main class II tissue adaptation, and supports CD86, 
CD80, and CD40 molecules.78

Due to the importance of PRL in regulating the immune 
system and based on previous studies, there is a signifi-
cant relationship between hyperprolactinemia and various 
autoimmune diseases such as systemic lupus erythematosus 
(SLE)100 and Behçet’s disease.101

Endocrine/Paracrine PRL stimulates immune cells by 
binding to its receptor. Elevated PRL levels, which are often 
seen in autoimmune diseases, may be related to the bidi-
rectional communication between PRL and the immune 
system. Elevated PRL levels have been reported in the active 
phase of some autoimmune diseases, including SLE and 
rheumatoid arthritis, celiac disease, type 1 diabetes, Addi-
son’s disease, and autoimmune thyroid disease.78 82 Previous 
reports have demonstrated that bromocriptine, a dopamine 
agonist, has an effective role in reducing the production of 
autoantibodies, affecting the function of lymphocytes, and 
modulating the expression of surface molecules by reducing 
PRL levels.102 In other words, bromocriptine plays an 
important role in treating various autoimmune diseases by 
reducing PRL levels.102 103

Hyperprolactinemia, endothelial dysfunction, and the 
risk of cardiovascular events
PRL is a pituitary hormone with a variety of metabolic 
functions that are not unique to the mammary glands. With 
receptors expressed in almost all organs, PRL is involved 
in many physiological and pathophysiological processes, 
including the reproductive, metabolic, regulatory, and 

immune regulatory systems.104 It should be noted that 
PRLR is found in atherosclerotic plaques. However, the 
correlation between serum PRL levels and the extent and 
severity of coronary atherosclerosis has not yet been fully 
elucidated.105

In patients with prolactinoma, elevated serum PRL 
is pathologically associated with cardiovascular prob-
lems and typically linked with insulin resistance, prone to 
inflammation, and endothelial dysfunction.104 106 107 High 
serum PRL levels in women are significantly associated 
with systemic hypertension, aortic stiffness, and hyperten-
sion.12 A population-based study revealed positive associa-
tions between serum PRL concentrations and inflammatory 
biomarkers and anthropometric measurements.104 More-
over, other studies have shown that hyperprolactinemic 
states are associated with low-grade inflammation, impaired 
endothelial function, increased platelet aggregation, 
increased thrombosis risk, and dyslipidemia. Also, fibrin-
ogen levels were a little increased in patients compared with 
the controls. Additionally, patients with stroke, myocardial 
infarction, and acute coronary syndromes had significantly 
higher serum PRL concentrations in comparison with 
healthy controls.104 108

The association of hyperprolactinemia with subsequent 
mortality may be due to the wide range of biological 
effects of PRL, from the production of atherogenic pheno-
types, proliferation of vascular smooth muscle cells, and 
increased vasoconstriction to increased oxidative stress. 
Oxidative stress causes PRL to fragment into a 16 kDa 
angiostatic and proapoptotic fragment.109 This 16 kDa 
fragment adversely affects the endothelium as well as the 
coronary arteries and cardiovascular function and has also 
been hypothesized to be a potential factor in the patho-
genesis of peripartum cardiomyopathy. In general, PRL is 
a hormone that affects various stages of vascular formation 
or heart regeneration (stimulation or inhibition), and can 
therefore cause coronary heart disease, heart failure, and 
subsequent mortality.104 110

In vitro studies have demonstrated that PRL is able to 
modulate the inflammatory response to stimulate the adhe-
sion of mononuclear cells to endothelium, and to enhance 
vascular smooth muscle cell proliferation.111 Research has 
also shown that PRL is an independent factor in the vari-
ance of flow-mediated dilation and pulse wave velocity 
(PWV) surface levels.112

Our main knowledge stems from the atherogenic effects 
of PRL in the context of senile/postpartum cardiomyopathy, 
a disease with symptoms such as contraction, autoimmu-
nity, apoptosis, and endothelial dysfunction. Unbalanced 
prepartum/postpartum oxidative stress associated with 
proteolytic degradation of PRL has been linked to a potent 
16 kDa anti-angiogenic and proapoptotic amino protein 
subtype that initiates atherosclerotic complications. These 
data, together with previous experimental results, show 
that PRL-mediated mechanisms alter vascular integrity.113

Coronary artery disease, which is the consequence of 
atherosclerosis, is still the leading cause of death worldwide, 
and with an is estimated mortality rate of seven million per 
year, it is responsible for 30% of all global deaths.105 Athero-
sclerotic plaques begin to form when monocytes attach to 
the endothelial cells of the arterial wall. These cells express 
cell adhesion molecules and inflammatory cytokines after 
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being activated by oxidized low-density lipoprotein choles-
terol (LDL-c).114

An in vitro research demonstrated that PRL has the 
ability to stimulate the adhesion of monocytes to the endo-
thelium. On the other hand, PRL induces the proliferation 
of smooth muscle cells, which indicates that it stimulates 
the thickening of the intimate media, an important process 
in the formation of atherosclerotic plaques.115 Disruption 
of atherosclerotic plaques leads to thrombus formation and 
arterial occlusion. Blood platelets are also an important 
component in thrombus formation. In general, research 
suggests that PRL may contribute to CVD by directly modu-
lating local cellular processes in atherosclerotic plaques or 
thrombi or by affecting common cardiovascular metabolic 
factors.116

Hyperprolactinemia and peripartum cardiomyopathy
Peripartum cardiomyopathy (PPCM) is a congestive heart 
failure occurring in the last month of pregnancy or 5 months 
after delivery, in the absence of pre-existing heart disease.117 
The disease can range from a mild form with unexplained 
symptoms, such as exercise intolerance, general discomfort, 
and peripheral edema, to a severe form with cardiogenic 
shock, including irritation, orthopnea, and pneumonia. The 
increase of knowledge and advancement of diagnostic and 
therapeutic insights have been effective in treating patients 
with PPCM in recent years.118 The cause of this disease 
remains unclear, although plausible causes such as malnu-
trition, viral infections, stress-activated cytokines, patho-
logical response to hemodynamic stress, inflammation, and 
autoimmune reactions have been reported.116 Evidence 
supports the probable role of PRL in the pathophysiology of 
this disease. Increased oxidative stress leads to the produc-
tion of the 16 kDa form of PRL, which disrupts the heart’s 
vessels and metabolism and peaks in systolic heart failure.119

In summary, antimyosin sarcomere antibodies and 
troponin I have been found in women with peripartum 
cardiomyopathy, confirming the presence of an under-
lying autoimmune disorder. On the other hand, these anti-
bodies were associated with the severity of left ventricular 
dysfunction and a lower rate of complete heart recovery at 
follow-up.120

Studies have shown a combination of increased oxida-
tive stress in late pregnancy or early postpartum and high 
levels of PRL as a probable pathophysiological cause of 
PPCM.121 Under various conditions that cause oxidative 
stress, 23 kDa PRL is cleaved by proteases such as cathepsin 
D or matrix metalloproteases to produce a 16 kDa fragment 
of PRL.109 122 This 16 kDa PRL fragment has strong angio-
static, proapoptotic, and inflammatory effects, destroying 
blood vessels, and thereby reducing oxygen and nutrition 
to the heart, which can lead to heart failure.123 The 16 kDa 
PRL fragment has destructive but often reversible effects on 
heart function. In addition to standard heart failure therapy 
and supportive care, bromocriptine has a potential role in 
improving PPMC.123

Hyperprolactinemia and blood pressure
Evidence has shown that PRL has positive vasoconstrictive 
effects.124 In recent years, separate reports have shown the 
role of PRL in the human cardiovascular system to some 

extent. As recently shown, high levels of PRL have a patho-
genetic role in pre-eclampsia. PRL is involved in renal reten-
tion of fluids and electrolytes and may therefore increase 
arterial pressure.125 A rise in PRL levels can increase blood 
pressure, according to a study on male mice.126

Based on studies performed in postmenopausal women, 
there was a positive and significant relationship between 
serum PRL levels and arterial blood pressure. On the other 
hand, this hormone is associated with systolic and diastolic 
blood pressure in the central aorta and PWV, which indi-
cates aortic stiffness.124 Significantly, according to the Euro-
pean Heart Association, PRL is related to the composite 
index that predicts the 10-year cardiovascular mortality. 
PRL levels >8.0 ng/mL were 100% sensitive in predicting 
high peripheral blood pressure.124 Thus, hyperprolactin-
emia may be accelerated by affecting central/peripheral 
blood pressure and arterial stiffness, which plays a key role 
in atherosclerosis.124 127

Hyperprolactinemia, diabetes, and impaired glucose 
regulation
According to some studies, high levels of PRL can increase 
insulin resistance in the body and liver and impair insulin 
secretion in diabetic rats and patients with hyperprolac-
tinemia. Patients with pituitary prolactinoma are often at 
higher risk for hyperglycemia associated with obesity and 
insulin resistance.11

Hyperprolactinemia has been reported to reduce glucose 
tolerance and increase insulin resistance in patients with and 
without obesity.11 128 Importantly, in a study by Daimon et 
al, it was shown that higher serum PRL levels were physio-
logically related to insulin resistance.128 To note, pancreatic 
β-cells and adipocytes widely express dopamine receptors 
type 2, and dopamine has been hypothesized to play a key 
role as a modulator of insulin and adipose functions.11 
Dopamine agonists, such as bromocriptine and cabergo-
line, significantly improve glucose tolerance and reduce the 
prevalence of metabolic syndrome in a significant propor-
tion of patients. Therefore, control of hyperprolactinemia 
by dopamine agonists is an important strategy to improve 
glucose and insulin abnormalities.129

Hyperprolactinemia and lipid profile
PRL is known as a metabolic hormone and hyperprolactin-
emia can cause metabolic and inflammatory changes that are 
associated with accelerated atherosclerosis.107 Studies have 
linked hyperprolactinemia to impaired fat profile. In partic-
ular, a decrease in high-density lipoprotein cholesterol and 
an increase in total cholesterol or LDL-c and triglycerides in 
patients with prolactinoma compared with healthy controls 
have been shown to be effective.129 PRL directly affects 
adipose tissue because PRLR increases during fat cell differ-
entiation and may be involved in lipid metabolism in adult 
adipocytes.130 On the other hand, D2-like receptors, such as 
dopamine D2 receptor, are expressed on human adipocytes, 
indicating the regulatory role of environmental dopamine 
in the function of these cells,131 and dopamine agonists 
prevent PRL expression and secretion by adipocytes in 
vitro. These findings support the hypothesis of the benefi-
cial effect of dopaminergic activation on lipid dysfunction 
in patients with hyperprolactinemia.132

 on A
pril 10, 2024 by guest. P

rotected by copyright.
file:/

J Investig M
ed: first published as 10.1136/jim

-2022-002351 on 29 June 2022. D
ow

nloaded from
 



7Ghoreshi Za, et al. J Investig Med 2022;0:1–9. doi:10.1136/jim-2022-002351

Review

Potential applications of dopamine agonists on PRL 
production
Dopamine is an effective inhibitor of PRL secretion due to 
either a direct influence on the hypophysis or the stimu-
lation of postsynaptic dopamine receptors in the hypo-
thalamus, provoking the release of the PRL inhibitory 
factor.9 As a result, it is worthy to mention that the most 
important known factor in regulating PRL secretion is 
dopamine, which has an inhibitory role in the secretion of 
this hormone. Dopamine has an inhibitory impact through 
a direct effect on the pituitary gland or stimulation of post-
synaptic dopamine receptors in the hypothalamus.

Bromocriptine is an ergot alkaloid that binds to the 
dopamine receptor and inhibits central PRL synthesis. 
Bromocriptine has been shown to reduce the production 
of antibodies, affect the function of lymphocytes, and regu-
late the expression of surface molecules. However, it has no 
clear effect on the production of PRL outside the pituitary 
gland.9 Cabergoline, an ergot derivative, is a potent dopa-
mine receptor agonist in DD receptors. Studies have shown 
that cabergoline has a direct inhibitory effect on pituitary 
lactotrophic cells.133 The beneficial therapeutic effects 
of these two dopamine agonists and their low toxicity 
are strong reasons for their potential in future treatment 
proposals.

CONCLUSIONS
PRL is a multifunctional pituitary hormone, which has meta-
bolic actions that are not confined to the lactating mammary 
gland. PRLR is widely expressed in the human body and 
mediates PRL actions by activating JAK2/STAT5, PI3K, and 
MAPK pathways. Even though PRL is able to interact with 
PRLRs in different locations, the mechanisms regulating 
the expression of PRLR (and its different isoforms) in each 
extrapituitary tissue are essentially unknown. Therefore, 
considering the role of hyperprolactinemia in the incidence 
and recurrence of autoimmune diseases, CVDs, hyperten-
sion, impaired glucose tolerance, and impaired lipid profile, 
more comprehensive studies are highly recommended to 
reveal the exact mechanisms involved in the subsequent 
repercussion of hyperprolactinemia.
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