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ABSTRACT
Different demographic, clinical and laboratory 
variables have been related to the severity and 
mortality following SARS-CoV-2 infection. Most 
studies applied traditional statistical methods and 
in some cases combined with a machine learning 
(ML) method. This is the first study to date to 
comparatively analyze five ML methods to select 
the one that most closely predicts mortality in 
patients admitted with COVID-19. The aim of this 
single-center observational study is to classify, 
based on different types of variables, adult patients 
with COVID-19 at increased risk of mortality. SARS-
CoV-2 infection was defined by a positive reverse 
transcriptase PCR. A total of 203 patients were 
admitted between March 15 and June 15, 2020 
to a tertiary hospital. Data were extracted from 
the electronic medical record. Four supervised ML 
algorithms (k-nearest neighbors (KNN), decision tree 
(DT), Gaussian naïve Bayes (GNB) and support vector 
machine (SVM)) were compared with the eXtreme 
Gradient Boosting (XGB) method proposed to have 
excellent scalability and high running speed, among 
other qualities. The results indicate that the XGB 
method has the best prediction accuracy (92%), 
high precision (>0.92) and high recall (>0.92). The 
KNN, SVM and DT approaches present moderate 
prediction accuracy (>80%), moderate recall (>0.80) 
and moderate precision (>0.80). The GNB algorithm 
shows relatively low classification performance. 
The variables with the greatest weight in predicting 
mortality were C reactive protein, procalcitonin, 
glutamyl oxaloacetic transaminase, glutamyl pyruvic 
transaminase, neutrophils, D-dimer, creatinine, lactic 
acid, ferritin, days of non-invasive ventilation, septic 
shock and age. Based on these results, XGB is a solid 
candidate for correct classification of patients with 
COVID-19.

INTRODUCTION
COVID-19, caused by a coronavirus-2 
(SARS-CoV-2) infection and causing severe 
acute respiratory syndrome, first emerged in 
Wuhan, Hubei, China in December 2019.1 The 
virus is highly transmissible, even more than 
SARS-CoV,2 manifesting clinically from asymp-
tomatic or mild forms with cough, fever and 
myalgia, to triggering bilateral pneumonia with 
severe respiratory failure that requires mechan-
ical ventilation and/or multiorgan damage that 

can lead to death.3 During the first wave, the 
mortality rate due to COVID-19 was less than 
3%, although the fatality rate for severe cases 
is high, according to the WHO. The current 
global epidemiological situation is character-
ized by a high percentage of the population 
immunized against SARS-CoV-2, as well as an 
increase in the proportion of mild and asymp-
tomatic cases, with the case fatality rate being 
less than 1%.4 In Spain, as of February 11, 
2022, 10,555,197 cases of COVID-19 have 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ COVID-19 causes severe acute respiratory 
syndrome manifesting clinically from 
asymptomatic to mild forms with cough, 
fever and myalgia, to triggering bilateral 
pneumonia with severe respiratory failure 
and multiorgan damage, which can lead to 
death.

	⇒ A wide variety of clinical, laboratory and 
demographic variables associated with 
severity and mortality from COVID-19 have 
been identified, including but not limited to 
age, previous healthy status and laboratory 
parameters.

	⇒ Most studies do not perform a 
comprehensive risk assessment to predict 
COVID-19-related mortality due to the 
increased number of clinical, laboratory 
and anthropometric variables which limits 
conclusions.

WHAT THIS STUDY ADDS
	⇒ Machine learning, as part of artificial 
intelligence, is a useful tool to assign 
variables to predict COVID-19 mortality.

	⇒ The eXtreme Gradient Boosting (XGB) 
model of machine learning was superior 
to decision tree, Gaussian naïve Bayes, 
k-nearest neighbor and support vector 
machines in predicting variables for 
COVID-19 mortality.

	⇒ The variables that best predict COVID-19 
mortality were levels of C reactive protein, 
procalcitonin, glutamate oxaloacetate 
transferase and glutamate pyruvate 
transferase transaminases, number of 
neutrophils, D-dimer, creatinine, septic 
shock and age.
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been confirmed, including a total of 95,606 deaths.4 Case 
fatality rates help to understand the severity of the disease, 
identify populations at risk and assess the quality of health-
care. Predicting the clinical course of this disease based on 
several variables is of vital importance for proper patient 
management.

A wide variety of clinical, laboratory and demographic 
variables associated with severity and mortality from 
COVID-19 have been identified.5 6 Most studies did not 
perform comprehensive risk assessment to predict COVID-
19-related mortality.7 8 To circumvent these drawbacks, 
machine learning (ML) models have emerged designed to 
make accurate predictions using data from a multitude of 
variables, as opposed to classic statistical models created 
to make inferences about relationships between variables. 
ML, as part of artificial intelligence (AI), uses statistical and 
mathematical algorithms that allow the opting of patterns 
that help in making complex decisions.9 These algorithms 
can be used to develop predictive models and reduce 
the complexity of clinical phenotypes. They are used in 
biomedicine as elements of clinical decision support and as 
generators of new clinical knowledge. For example, they 
have been used in the prediction of hospitalization for heart 
disease.10

On the other hand, progress has been made in the 
modeling of clinical data in electronic medical records 
(EMR) and specifically in the ability of ML techniques to 
predict mortality.11 ML constitutes an integrative method 
that allows observation of the combined effect of multiple 
variables and their interactions, allowing generation of 
knowledge about the disease from patients’ EMR data, and 
is a very useful tool in conditions where structured numer-
ical data are readily available.

ML algorithms have been explored in different fields 
of COVID-19, mainly in the detection of outbreaks and 
spread of SARS-CoV-2,12 prediction of incidence rates,13 
early diagnosis,14 prediction of risk of complications and 
severity,15 as well as prediction of mortality risk.16–20 Syeda 
et al21 recently conducted a systematic review on the role of 
AI as a comprehensive and critical technology in combating 
the COVID-19 crisis in the fields of epidemiology, diag-
nosis and disease progression. Only 14.6% of the studies 
were related to the latter. Thus, a more precise approach 
to COVID-19 mortality is needed. To our knowledge, this 
is the first study to develop, compare and validate five 
ML models in predicting in-hospital mortality in patients 
admitted with COVID-19 in a tertiary-level hospital and 
research reference hospital in Spain during the first wave 

of the pandemic. Demographic, clinical and laboratory 
data easily extractable from the hospital EMR were used 
for prediction. The study is structured in a brief intro-
duction highlighting the case fatality or mortality rate as 
a key variable in the study of a newly emerging disease 
such as COVID-19 and the importance of applying ML 
to numerous variables associated with hospital mortality. 
The Materials and methods section describes the types of 
variables included and the data collected and used for the 
different ML models applied. The Results section includes, 
among others, the accuracy values of the five validated algo-
rithms for predicting hospital mortality from COVID-19. 
The Discussion section compares the results obtained in this 
study with the results of other studies using ML. Finally, 
the Conclusion section highlights the eXtreme Gradient 
Boosting (XGB) method over the other ML methods as a 
method for predicting mortality, facilitating patient stratifi-
cation and optimizing medical resources.

MATERIALS AND METHODS
Data sources
Patient data were obtained from different internal sources 
of the hospital, such as the EMR (Hosix. Net. Ink.), which 
includes a module for registration of results of clinical anal-
ysis and a module for electronic prescription of drugs and 
the prescription program of the intensive care unit (ICU) 
(IntelliSpace Critical Care and Anesthesia, V.H.02.00, 
Philips Iberica). With this information, a data collection 
questionnaire (DCQ) was constructed individually by 
patient.

Study design and population
This is a retrospective observational study carried out in 
a tertiary-level hospital that attends a monthly average of 
12,000 emergencies and 2000 hospital admissions. A total 
of 203 patients admitted to the hospital with SARS-CoV-2 
were included. Inclusion criteria were all patients admitted 
to the Valencia University General Hospital Consortium 
with SARS-CoV-2 infection confirmed microbiologically by 
reverse transcriptase PCR assay of a nasopharyngeal swab 
between March 15 and June 15, 2020. The patients selected 
were admitted to the hospital during a period of ≥7 days. 
Exclusion criteria were patients ≤18 years old and patients 
with missing clinical data of more than one clinical/labora-
tory variable during this period. Participants gave informed 
consent before taking part in study.

Study data
Data on demographic, clinical and laboratory variables 
were included in the CRD. The questionnaire was divided 
into eight sections.

Patient characteristics
Demographic variables such as age and sex and the following 
clinical variables were included: weight, height and pres-
ence of comorbidities of interest (hypertension, diabetes 
mellitus, chronic obstructive pulmonary disease, asthma, 
other chronic respiratory disease (eg, pulmonary dysplasia, 
cystic fibrosis), use of oxygen therapy or presence of trache-
ostomy, heart failure, ischemic heart disease, pulmonary 
hypertension, recent catheterization, renal failure (RF), 

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE 
OR POLICY

	⇒ The present work indicates that machine learning is a 
useful tool to predict mortality in hospitalized patients.

	⇒ Between different types of machine learning procedures, 
XGB is the best tool that predicts mortality and can 
be used routinely to identify which patients have an 
increased risk of worsening.

	⇒ This work identifies laboratory parameters that better 
predict mortality and which can be potentially used to 
stratify patients at risk.
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cirrhosis, history of neurological, active haematological or 
oncological neoplasia (with active treatment, diagnosis or 
recurrence/metastasis <5 years, excluding diagnosis of squa-
mous cell and basal cell carcinoma), and HIV). In the event 
that the patient presented another type of serious under-
lying pathology, it was specified in an open-text section. 
The following were taken into account as pharmacological 
treatment prior to admission: ACE inhibitors/angioten-
sin-2 receptor antagonists, non-steroidal anti-inflammatory 
drugs, and antihistamines and/or montelukast, as well as 
whether the patient was a healthcare professional or if 
the previous stay was in a residence or another healthcare 
center.

Initial data on arrival at the hospital
These included date of admission to the emergency room, 
date of admission to the hospital, date of onset of symp-
toms, date of microbiological confirmation, limitation of 
life support treatment and its date, and whether the patient 
required admission to the ICU. If the patient was admitted 
to the ICU, data on the risk of mortality (CURB-65 scale 
(Confusion, Urea nitrogen, Respiratory rate, Blood pres-
sure, 65 years of age and older)), level of altered conscious-
ness (Glasgow Scale) and other clinical variables were 
included: fever (≥38°C), respiratory rate >24 breaths per 
minute and systolic blood pressure <90 mm Hg in the first 
24 hours, baseline oxygen saturation (SpO2), and number of 
quadrants affected on the chest radiograph (1–4).

Data on admission to the ICU
These included date of admission, Acute Physiology And 
Chronic Health Evaluation (APACHE) II scores and Sepsis 
related Organ Failure Assessment (SOFA) scores.

Analytical data
The closest analysis after hospital admission (emergency/
admission), the first analysis since admission to the ICU and 
the last analysis of the hospital stay were included. The labo-
ratory parameters collected were leukocytes, neutrophils, 
lymphocytes, platelets, C reactive protein (CRP), glutamate 
oxaloacetate transferase (GOT), glutamate pyruvate trans-
ferase (GPT), lactate dehydrogenase (LDH), serum creati-
nine, hemoglobin, procalcitonin (PCT), lactic acid, creatine 
phosphokinase (CPK), D-dimer and ferritin.

Pharmacological treatment
This was taken into account if the patient participated in a 
clinical trial. The drugs considered were lopinavir/ritonavir, 
remdesivir, interferon beta, hydroxychloroquine, chloro-
quine, darunavir/cobicistat, darunavir/ritonavir, darunavir/
cobicistat/tenofovir/emtricitabine, fosamprenavir, tocili-
zumab, sarilumab, ciclosporin, anakinra, tacrolimus, eculi-
zumab, azithromycin, immunoglobulins, baricitinib and 
tofacitinib. For all these drugs, the dosage regimen and 
duration of treatment were included, and in the case of 
tocilizumab/sarilumab the levels of interleukin 6 (in pg/mL) 
and D-dimer (in μg/mL) were taken into account before 
and after treatment, as well as where treatment was started 
(ICU/no ICU). Other treatments included antibiotics, vaso-
pressors, prescribed and/or bolus corticosteroids, and use 
of low molecular weight heparin, distinguishing between 

prophylactic or treatment doses. The corticosteroids 
included were methylprednisolone, hydrocortisone, dexa-
methasone and prednisone.

Microbiological tests
The isolated micro-organism was taken into account in all 
cases. The tests were tracheal aspirate, blood cultures, pres-
ence of influenza and/or coinfection, pneumococcal antigen 
and Legionella antigen in urine.

Techniques performed during admission
The following were included: oxygen therapy, non-invasive 
ventilation (NIV), mechanical ventilation, ventilation in 
prone position, hemodialysis/hemofiltration and extracor-
poreal membrane oxygenation system.

Final evolution of the patient
First, the severity of the SARS-CoV-2 infection was indi-
cated according to the classification of severity levels of 
respiratory infections included in the COVID-19 clinical 
management protocol of the Ministry of Health on June 18, 
2020. Complications during admission (acute respiratory 
distress syndrome (ARDS), sepsis, septic shock, nosocomial 
pneumonia (not COVID-19), other nosocomial infection 
(not COVID-19, not pneumonia), and acute renal and liver 
failure) were included. As a final assessment, improvement 
in symptoms (fever, cough, etc) together with radiological 
improvement and/or alveolar pressure / inspired oxygen 
fraction (PaFi) ≥300 mm Hg or SpO2 >93 without oxygen 
administration during the first 7, 14, 21 or 28 days of 
admission, depending on their duration, were recorded. A 
distinction was made between hospital discharge or exitus. 
The date and destination of discharge (home, residence or 
support center, or unknown destination), date of discharge 
of ICU, date of exitus and days of admission were included. 
Whether the patient was readmitted within 14 days after 
discharge was also taken into account.

Model development
An XGB-based method was implemented in this study 
because it is a flexible, highly efficient, portable and flex-
ible supervised learning algorithm. The main advantages 
are that it is fast to run and is scalable and allows parallel 
computing.22–25 XGB algorithms are developed under the 
framework of gradient boosting. XGB features parallel tree 
boosting (also known as gradient-boosted decision trees), 
which solves many data science problems accurately and 
quickly. XGB is adopted to build a COVID-19 patient clas-
sification model. Given a data set S=xj, yj, the XGB model 
was designed using the following:

	﻿‍
ŷj =

P∑
p=1

tp
(
xj
)
‍�

(1)

where xj is the input vector with m time variables, ‍̂yj‍ 
shows the predicted output, yj represents the output, tp 
represents a tree with leaf weight wp and structure up, j=1; 
2;…; n, and P corresponds to the number of trees.

The regularized objective function for the proposed 
method is shown in equation 2. In this case, it is different 
from that of ensemble methods. In the proposed method, 
a second-order Taylor expansion is implemented to 
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approximate the objective function of XGB in order to 
improve prediction accuracy.22 23 To control the complexity 
of the model and avoid overfitting, the regulation term is 
used, which is represented by the weights of the leaf nodes 
and the tree depth.

 

 

	﻿‍
R =

∑
j

r
(

ˆyj, yj
)
+

∑
p
ψ
(
tp
)
‍� (2)

	﻿‍ Ψ
(
tp
)
= λfp + 1

2γ � wp �2‍� (3)

As can be seen in equation 3, fp corresponds to the tree 
pruning used to control overfitting. fp shows the number of 
leaves on the tree. Pruning is a method to improve gener-
alization in trees. Once the trees are built, the proposed 
XGBoost performs a ‘pruning’ step that, starting at the 
bottom (where the leaves are) and moving up to the root 
node, looks to see if the gain falls below λ. If the first node 
encountered has a gain value below λ, then the node is 
pruned and the pruner moves up the tree to the next node. 
If, on the other hand, the node has a gain greater than λ, 
the node is left and the pruner does not check the parent 
nodes.23 24 26 The R () function penalizes the complexity 
of the method. The learning rate is shown by λ and w is 
the vector of leaf scores. R () represents a function that 
measures the difference between the target output ‍yj‍ and 
the expected output ‍̂yj‍ . To control the complexity weight 
of the system, a parameter γ is employed.23 24 26 To improve 
performance, this study seeks to minimize equation 2.

The functions of the functions in equation 2 are incorpo-
rated in the tree set model.23 24 26 Because of this, equation 
2 cannot be optimized through traditional Euclidean space 
optimization systems. Therefore, in this study, ‍yj‍ was the 
j-th sample estimate at s-th iteration. With all these, equa-
tion 2 would look like the one shown in equation 4.

	﻿‍
Rs =

∑
j=1

r
(
ŷj

(
s−1

)
, yj + Cs

(
xj
))
+

∑
p
ψ
(
Cs

)
‍�

(4)

To reduce the objective function, the tree generated Cs by 
the j-th sample at the s-th iteration is added. Moreover, in 
the proposed method, the second-order approximation has 
been applied to optimize the objective function.22–24

	﻿‍
Rs ≈

∑
j=1

r
[
ŷj

(
s−1

)
, yj + hjCs

(
xj
)
+ 1
2bjC

2
s
(
xj
)]
+ ψ

(
Cs

)
‍�
(5)

where 
‍
hj = ∂ŷj

(
s−1

)
r

(
ŷj

(
s−1

)
, yj

)

‍
 represents the first-

order gradient statistic for the loss function R () and 

‍
hj = ∂2ŷj

(
s−1

)
r

(
ŷj

(
s−1

)
, yj

)

‍
 shows the second. The optimal 

weight w_rv of the license v for a fixed structure u(x) can be 
estimated as:﻿‍ ‍

	﻿‍
w− rν = −

∑
jϵKν

(
hk
)

∑
jϵKν

(
bj+γ

)
‍�

(6)

Finally, the optimal value can be achieved by means of 
equation 7 for the proposed method.

	﻿‍ R̃

(
s
)(

u
)
=− 1

2

(∑
jϵKν

(
hj
))2

∑
jϵKν

(
bj+γ

) +λF
‍�

(7)

For this study, the proposed method was compared with 
different ML methods in order to classify patients into 
two groups: patients without risk and patients with risk of 
mortality from COVID-19. The methods involved decision 
tree (DT),27 Gaussian naïve Bayes (GNB),28 29 k-nearest 
neighbors (KNN),30 31 support vector machines (SVM)32 33 
and the proposed method XGB.23 24 The MatLab Statis-
tical and Machine Learning Toolbox (MatLab V.2021a; 
The MathWorks, Natick, Massachusetts, USA) was used 
to implement the models. A fivefold cross-validation was 
applied to avoid overfitting. The database was divided into 
two groups, 70% was used for training and 30% for testing, 
and patients were not shared.

The phases implemented for the whole study are described 
in figure 1. As can be seen, the subjects to be studied were 
first chosen. Once the database was created, training and 
validation of the ML methods were carried out.

Performance evaluation
In this paper, the different methods were compared with 
the following metrics: degenerate Youden index (DYI), 
specificity, precision (also known as positive predictive 
value), recall (also known as sensitivity), balanced accuracy, 
receiver operating characteristic (ROC) and area under the 
curve (AUC). The F1 score is described as:

	﻿‍ F1score = 2 Precision.Recall
Precision+Recall‍� (8)

Matthew’s correlation coefficient (MCC) was also used 
to test the performance of the ML methods, defined as:

 

	﻿‍
MCC = TP.TN−FP.FN√(

TP+FP
)(
TP+FN

)(
TN+FP

)(
TN+FN

)
‍� (9)

where TP represents the number of true positives, FP is 
the number of false positives, TN shows the number of true 
negatives and FN corresponds to the number of false nega-
tives. Cohen’s kappa index was used to estimate the overall 
performance of the system.34

RESULTS
This section describes the results obtained by using patient 
records for training and validation of COVID-19 mortality 
classification. The performance of the proposed system was 

Figure 1  Training and validation scheme for machine learning 
methods.
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compared with different ML methods that are accepted in 
the scientific community.

Table 1 presents the results achieved from the classifica-
tion methods such as SVM, DT, GNB and KNN and the 
proposed system for mortality classification of patients with 
COVID-19. As can be seen, the systems based on SVM and 
GNB obtained lower accuracy value than the rest of the 
methods; these values are close to 81%. As for the DT and 
KNN methods, they show improved classification capa-
bility by obtaining an accuracy value of 83%. On the other 
hand, the proposed XGB system achieved an accuracy value 
of 92%, a significant increase over the previous methods, 
which translates to better prediction. The algorithms that 
come closest to XGB in terms of precision and recall values 
are KNN and DT, which again performed better than SVM 
and GNB. As can be seen in table 1, the same thing happens 
with parameter F1 score, where XGB obtained higher 
values, which imply an improvement in classification.

To test the performance of the proposed XGB system 
in classifying mortality of patients with COVID-19, other 

parameters widely used in the literature, such as AUC, 
MCC, DYI and kappa index, were calculated. For this anal-
ysis, one of the most reliable statistical indices available, the 
MCC, was used. This coefficient produces a high score only 
if the prediction has been performed well in the four cate-
gories of the matrix. The results in the four categories of 
the confusion matrix (true positives, false negatives, true 
negatives and false positives) are proportional to the size of 
the positive elements and the size of the negative elements 
in the data set. As can be observed in table 1, the proposed 
method, XGB, achieved a value of 84.23%, increasing the 
values achieved by KNN and DT, which presented 75.16% 
and 72.94%. Both SVM and GNB showed worse perfor-
mance in this parameter. As for the kappa index, XGB 
obtained a value close to 85%, improving the value of KNN 
and DT by 9.28% and 11.56%, respectively. The same is 
true for the AUC and DYI parameters: the XGB method 
achieved a higher value, which means it can better classify 
mortality in patients with COVID-19.

Figure 2 shows a summary of the comparison between the 
XGB method and the other classifiers with respect to accu-
racy, recall and precision. XGB achieved values of 0.924, 
0.924 and 0.925, respectively, while those of KNN were 
0.854, 0.855 and 0.860. Figure  2 also shows the values 
obtained for MCC, kappa and F1 score. The proposed 
method obtained values of 0.842, 0.851 and 0.924, respec-
tively. The next closest system to XGB is KNN, with values 
of 0.752, 0.758 and 0.860. In all parameters, it can be 
observed how the proposed method shows better perfor-
mance in predicting mortality.

On the other hand, ROC was used to compare the classi-
fication capability of the proposed system with that of other 
ML methods. The curve is the result of plotting, for each 
threshold value, the sensitivity and specificity.35 In figure 3, 
the results obtained by the different systems of classification 
between patients with COVID-19 mortality and those who 
survive are shown, where a larger area can be appreciated 
for the XGB method, which implies better classification of 
the two classes; the values can be seen in table 1.

For clarity, all metrics have been grouped for each data 
set (training and test) and are presented as a radar plot. A 
perfect score on all metrics would be represented by a circle 
the size of the entire grid. In our study, model training sets 
have higher scores on all training set metrics and generally 
have lower scores on the test set. The shape of the graphs 

Table 1  Mean value and SD of balanced accuracy, recall, 
precision, F1 score, AUC, MCC, DYI and kappa of the machine 
learning models and the proposed method implemented in this 
study

Methods
Balanced 
accuracy Recall Precision F1 score

SVM 81.24±0.54 81.31±0.61 81.26±0.64 81.54±0.67

DT 83.25±0.78 83.17±0.72 83.15±0.73 83.31±0.74

GNB 80.08±0.67 80.11±0.75 79.91±0.62 80.07±0.66

KNN 85.42±0.59 85.48±0.45 86.01±0.35 86.08±0.41

XGB 92.37±0.31 92.43±0.36 92.55±0.24 92.42±0.27

Methods AUC MCC DYI Kappa

SVM 0.81±0.02 72.03±0.65 80.96±0.68 72.65±0.64

DT 0.83±0.02 72.94±0.72 82.79±0.63 73.58±0.69

GNB 0.80±0.02 71.65±0.75 79.87±0.71 72.61±0.73

KNN 0.85±0.02 75.16±0.43 85.23±0.47 75.86±0.51

XGB 0.92±0.02 84.23±0.26 92.39±0.24 85.14±0.25

AUC, area under the curve; DT, decision tree; DYI, degenerate Youden index; 
GNB, Gaussian naïve Bayes; KNN, k-nearest neighbors; MCC, Matthew’s 
correlation coefficient; SVM, support vector machine; XGB, eXtreme Gradient 
Boosting.

Figure 2  Graphical representation of precision, recall, accuracy, MCC, kappa and F1 score values in percentages. DT, decision tree; GNB, 
Gaussian naïve Bayes; KNN, k-nearest neighbors; MCC, Matthew’s correlation coefficient; SVM, support vector machine; XGB, eXtreme 
Gradient Boosting.
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can also be indicative of the quality of the models. The larger 
the area of the circle of the test set, the better the prediction 
method will be. The proposed XGB system (figure 4) is a 
good example of a balanced model. The training and test 
sets give rise to similar pie charts. These similarities are due 
to the system obtaining an optimal training point, with no 
overfitting or underfitting, and therefore the method has 
high generalizability. That is, given a new input, the system 
does well to provide a correct output. As can be seen, the 
GNB method performed the worst on most metrics. In view 
of the results obtained, we can say that the proposed XGB 
system manages to classify patients with COVID-19 with 
high accuracy and in an automatic way, confirming the fact 
that this tool would be of great help in clinical practice.

DISCUSSION
The current SARS-CoV-2 pandemic is associated with high 
morbidity and mortality.36 37 Most mortality prediction 
models for COVID-19 that use ML are based partially or 
totally on subjective clinical data, which may vary depending 
on the study.38 As far as we know, this is the first study to 
develop, compare and evaluate five supervised ML methods 
in the Spanish population to predict mortality in patients 
admitted with COVID-19 in a tertiary hospital.

ML models analyzed and related work
Unlike other studies,17–20 273 clinical, demographic and 
laboratory predictors were included to fit the models. 
Of all the ML classifiers applied, the XGB method was 
the pattern recognition method that managed to more 
precisely discriminate between patients at risk of mortality 
from COVID-19 and those who are not. This model was 
analyzed and compared with different supervised ML 
methods described in the literature, such as GNB, DT, 

KNN or SVM. Current ML classification methods, used in 
biomedical applications, have shown that supervised algo-
rithms, whether regression or classification, such as GNB, 
DT, KNN or SVM, usually have higher average accuracy 
than their unsupervised counterparts.39 40 In addition, indi-
vidually applied methods are limited in their precision, but 
combination of methods, when applied correctly, can have 
higher overall classification precision, as is the case with 
the proposed XGB method.39 40 In our study, the SVM and 
GNB methods performed the worst, with KNN the method 
that most closely approximates the precision values of the 
proposed method. This is in line with the results of studies 
describing these supervised ML algorithms in predicting 
mortality from COVID-19.41–44 Different studies19 20 using 
the XGB method for COVID-19 mortality prediction 
obtained accuracy values above 90%, as in our case, but 
in North American and Chinese populations. The number 
of variables included in these studies was much lower than 
in our study, and in addition pharmacological treatments, 
both before and during hospital stay, were not considered 
as variables of interest. .Our study provides a similar radar 
plot between the training and test phases, indicating that 
the system does not lose much predictive capability. The 
results show that the proposed model can handle large 

Figure 3  ROC curves for the five assessed machine learning 
predictors. DT, decision tree; GNB, Gaussian naïve Bayes; KNN, 
k-nearest neighbors; ROC, receiver operating characteristic; SVM, 
support vector machine; XGB, eXtreme Gradient Boosting.

Figure 4  Radar plot of the training phase (top) and test (bottom) 
for prediction of mortality in patients with COVID-19. AUC, area 
under the curve; DT, decision tree; GNB, Gaussian naïve Bayes; 
KNN, k-nearest neighbors; MCC, Matthew’s correlation coefficient; 
SVM, support vector machine; XGB, eXtreme Gradient Boosting.
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data dimensions, avoiding overtraining, and significantly 
improves the performance of other classification methods. 
It achieved higher values for precision, recovery and accu-
racy than those achieved by the other methods. This guar-
antees its reliability for the automatic classification of the 
desired result. XGB is a predictive model that has excellent 
scalability and high execution speed.45 It has been applied 
in biomedicine (table 2) to classify patients with cancer,46 
epilepsy,47 atrial fibrillation48 and those at risk of hyper-
tension,49 and to diagnose chronic kidney disease.50 Yu et 
al51 and Zhong et al52 took advantage of the XGB method 
to predict the location of submitochondrial and essential 
proteins in their respective work.

Predictors of mortality and related work
In our study, the predictors of mortality, in order of 
weighting, were CRP, PCT, GOT, NIV days, neutrophils, 
GPT, D-dimer, creatinine, septic shock, age, lactic acid and 
ferritin. White cell counts and platelets were also weighted 
to a lesser degree. Of the patients, 52.7% were male and 
65.5% of the total were ≥65 years old. Of the patients, 
22.7% were deceased and 16.2% were admitted to the ICU, 
with both percentages higher than in other studies.18 53 54 
Consistent with other studies,16 17 20 advanced age was the 
main demographic predictor of hospital mortality in patients 
with COVID-19. The study by Sánchez-Montañes et al18 
applied different ML methods, with age being the most 
important predictor of mortality. The systematic review 
by Zheng et al55 included 3027 patients and showed age 
≥65 years (OR 6.06, 95% CI 3.98 to 9.22) as the factor 
that was most associated with progression of COVID-19. 
Other authors that used other ML models, such as the arti-
ficial neural network56 or the deep learning model,36 also 
highlighted age as a predictor of progression to a severe/
critical clinical picture of severity and/or mortality. The 
clinical predictors included the scores obtained on the 
APACHE II, SOFA and CURB-65 scales. Although all of 
these are useful in predicting mortality in patients with 
COVID-19,57 in our study they did not have a significant 
weight. On the other hand, comorbidities such as diabetes 
and hypertension have been described as risk factors for 
poor prognosis and progression in patients with COVID-
19.58 59 In our study, we did not find an association between 
these comorbidities and mortality from COVID-19, as is 
the case in other studies.53 History of cardiac comorbidities 
and CPK measurement were taken into account as a marker 
of cardiac dysfunction, unlike in other studies which pref-
erentially used elevated cardiac troponin as an indicator of 

cardiac injury.15 36 SARS-CoV-2 interacts with the cardio-
vascular system on multiple levels and heart problems are 
associated with higher mortality in patients with COVID-
19,15 36 although in our study there was no association in 
this regard. Other predictors that were positively associated 
with mortality were septic shock and NIV days, as described 
in the systematic review by Adamidi et al.43 Most of the 
studies in this review showed SpO2 and respiratory failure 
as predictors of mortality instead of talking about patients 
with NIV. Elevated blood urea nitrogen (BUN) and D-dimer 
and lymphocytopenia were associated with extrapulmo-
nary disorders and possible multiorgan damage caused by 
COVID-19,16 all of which were a result of septic shock 
due to infection. The laboratory parameters were obtained 
after patients’ admission. Those related to altered kidney 
function, such as BUN and serum creatinine, were asso-
ciated with a worse prognosis in these patients,60 similar 
to our case. Different studies have identified acute kidney 
injury (AKI) as a sequela in patients with severe COVID-19, 
many of whom died.61 A Cox regression analysis showed 
that proteinuria, hematuria, and elevated BUN and creati-
nine levels, among other characteristics, were significantly 
associated with death of patients with COVID-19.62 This 
analysis suggested that patients with COVID-19 who 
developed AKI are at risk of mortality ∼5.3 times greater 
than those without AKI. As in our research, other studies 
using ML17 19 20 36 57 63 identified the following laboratory 
parameters as predictors of severity and mortality: CRP, 
lactic acid, PCT, ferritin, D-dimer, GOT, GPT and neutro-
phils. PCT is elevated during bacterial infection, but less 
so during viral infection, suggesting that bacterial coinfec-
tion leads to worse outcomes in patients with COVID-19.36 
Elevated serum ferritin is associated with ARDS.64 Wu et 
al65 conducted a retrospective cohort study of 201 patients 
with COVID-19 and found that elevated serum ferritin was 
an independent risk factor related to the development of 
ARDS, but no similar association was observed in terms 
of mortality, possibly due to insufficient sample size. The 
meta-analysis of Henry et al66 confirmed serum ferritin as 
a possible biomarker of progression to critical illness in 
patients with COVID-19. D-dimer has also been associated 
with mortality in patients with COVID-19.19 62 This is a 
marker of hypercoagulability and thrombosis that has been 
found to be elevated in patients with COVID-19.19 Concen-
trations greater than 1 µg/mL are associated with poor prog-
nosis in the initial stages of the disease.53 Elevated GOT 
levels due to liver dysfunction have been seen in severe cases 
of COVID-19.67 Jiang et al63 used supervised learning and 
found that elevation in GPT was predictive of severe ARDS 
in patients with COVID-19. Elevation of both enzymes 
and therefore liver disease are considered predictors of 
severity in these patients.68 Finally, low levels of leukocytes 
and neutrophils have also been described as predictors of 
severity,69 as well as thrombocytopenia described in criti-
cally ill patients with COVID-19.70 The recent systematic 
review by Bottino et al44 concludes, as does our study, that 
among the predictors most associated with mortality are age 
and CRP and LDH levels.

Table 2  Comparison of XGB method as a classification in 
biomedical applications

Accuracy AUC Recall

Ma et al46 0.83 0.87 0.95

Torlay et al47 0.93 0.91 –

Ogunleye et al50 0.98 0.99 0.98

Shi et al74 0.92 – 0.92

Yu et al51 0.97 – 0.96

Zhong et al52 0.78 0.78 0.55

AUC, area under the curve; XGB, eXtreme Gradient Boosting.
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XGB as a predictive model of mortality
XGB is the easiest binary classification method to imple-
ment and train, which means that as more data become 
available this algorithm will improve with respect to predic-
tive performance.44 Similarly, Sánchez-Salmerón et al71 in 
their systematic review highlight the XGB method as one 
of the models that achieve the highest level of predictive 
accuracy and can be a good tool to aid the triage process of 
patients with COVID-19. Wan et al72 in their recent study 
used the random forest classifier with very similar charac-
teristics to the XGB and obtained similar results with both.

Comparative studies have revealed that ML methods 
can be more accurate and efficient than traditional logistic 
regression analysis, especially when the sample size is 
limited.73 Including data from other modalities, such as 
genomic profiling and medical imaging, could further 
improve the predictive performance of the presented 
model. Since the length of hospital stay for most patients 
was greater than 1 week, our model can predict patients’ 
outcome more than 1 week in advance.

CONCLUSION
ML techniques are the most sophisticated and accurate tools 
for predicting events of interest in general and COVID-19 
mortality prediction in particular. Of the five ML methods 
studied and validated, the XGB method obtained the highest 
accuracy in predicting hospital mortality due to COVID-19, 
with the following predictors of hospital mortality having 
the highest weight: nine biomarkers (CRP, PCT, GOT, GPT, 
neutrophils, D-dimer, creatinine, lactic acid and ferritin), 
days of NIV, septic shock and age. Other variables of interest 
were white cell counts and platelets. None of the pharma-
cological treatments included in the study had sufficient 
weight in predicting mortality for any of the models used.

The XGB method achieves a prediction value of 92%, 
improving by 6.95% the results shown by KNN, the second 
better ML method. The XGB method will help health-
care professionals in the process of stratifying cases and in 
making decisions about resource allocation and optimizing 
treatment for patients with COVID-19. This study will lay 
the groundwork for future multicenter studies with large 
inpatient and home-based populations. The results of this 
work will facilitate implementation of optimal economic 
and socio-health policies.
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