Supplementary

Efficacy and cardiovascular safety of LAMA in patients with COPD: a systematic review and meta-analysis

Chuchu Zhang ${ }^{1,2}$, Meng Zhang ${ }^{1,2}$, Yalei Wang ${ }^{1,2}$, Huaiyu Xiong ${ }^{1,2}$, Qiangru Huang ${ }^{1,2}$, Tiankui Shuai ${ }^{1,2}$, Jian Liu ${ }^{1 *}$

1. Department of Intensive Care Unit, Lanzhou University First Affiliated Hospital, Lanzhou University, Lan Zhou, Gansu Province, China
2. The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu Province, China

Short Title: LAMA in patients with COPD: a systematic review and meta-analysis.
Corresponding Author:

Jian Liu

Department of Intensive Care Unit, Lanzhou University First Affiliated Hospital, Lanzhou University.

No. 199 Donggang West Road, Lanzhou, Gansu Province, 730000, China.

Tel: +8613609354197

E-mail: medecinliu@sina.com

Fig. S1. Risk of bias summary for included studies, showing each risk of bias item for every included study.

Fig. S2. Risk of bias graph presenting each risk of bias item as percentages across all included studies.

Fig. S3. Subgroup analysis of all adverse events based on the duration.

Fig. S4. Subgroup analysis of cardiovascular disease based on the duration.

Fig. S5. Subgroup analysis of trough FEV_{1} based on the drug type. Abbreviation:

A: Aclidinium, Gly: Glycopyrronium, Tio: Tiotropium, U:umeclidinium, R: revefenacin.

Fig. S6. Subgroup analysis of trough FEV_{1} based on the treatment duration.

Fig. S7. Subgroup analysis of trough FEV_{1} based on the inhaler of LAMA.

Abbreviation: DPI: Dry Powder Inhaler, JN: Jet Nebulizer, MDI: Metered Dose

Inhaler, SMI: Soft Mist Inhaler.

Fig. S8. Forest plot of TDI focal score in COPD patients with LAMAs versus placebo.

Fig. S9. Forest plot of TDI responders in COPD patients with LAMAs versus placebo

Fig. S10. Forest plot of SGRQ score in COPD patients with LAMAs versus placebo.

Fig. S11. Forest plot of SGRQ responders in COPD patients with LAMAs versus placebo.

Fig. S12. Forest plot of the number of patients with at least one moderate or severe exacerbations with LAMAs versus placebo (subgroup analysis based on the drug type). Abbreviation: A: Aclidinium, Gly: Glycopyrronium, Tio: Tiotropium, U:umeclidinium, R: revefenacin.

Fig. S13. Forest plot of the number of patients with at least one moderate or severe exacerbations with LAMAs versus placebo (subgroup analysis based on the duration)

Fig. S14. Sensitivity analysis of all adverse events.

Fig. S15. Sensitivity analysis of cardiovascular events.

Fig. S16. Sensitivity analysis of trough FEV1.

Fig. S17. Sensitivity analysis of the reduction of COPD exacerbation.

Fig. S18. Funnel plot for publication bias.

Table S1. Characteristic of included studies.

Study	Year	country	N	smoker (\%)	pack-years	$\beta 2$ - agonists use(\%)	COPD severity(\%)				Drug	Inhaler	Duration weeks	outcome
				LAM	Placebo		mild	moderate	severe	very severe				
Ferguson			198/209	48.5/49.3	NA	39.9/35.4		NA			R175 $\mu \mathrm{g} \mathrm{qd}$	JN	12	(1)(2)(3)
G.T.*			197/208	47.7/45.7	NA	37.6/35.1		NA			R $175 \mu \mathrm{~g}$ qd	JN	12	(1) (3)(7)
Robert A. Wise	2019	Multinational	1791/1798	43.8/43.3	NA	86.4/89.3	1.9/1.8	44.4/44.9	41.4/39.7	12.3/13.6	A $400 \mu \mathrm{~g}$ bid	DPI	144	(1) (2) 8)
Brian J					$44.8 \pm 25.5 /$									(1)(2)(3)4
Lipworth	2018	Multinational	$480 / 238$	44.1/48.1	45.7 ± 26.4	NA	$1.9 / 2.6$	59.758 .3	35.4/36.6	3.0/2.6	Gly $18 \mu \mathrm{~g}$ bid	MDI	24	(5)(6)(7) 8
Y.Zhou	2017	China	388/383	41.2/40.2	$\begin{gathered} 50.6 \pm 57.8 / \\ 55.1 \pm 86.1 \end{gathered}$	NA	43.1/44.6	56.9/55.4	0/0	0/0	Tio $18 \mu \mathrm{gqd}$	DPI	96	(1)(2)(3)8
Fernando J.			451/219	54.3/52.8	$\begin{gathered} 50.4 \pm 25.1 / \\ 50.8 \pm 27.5 \end{gathered}$	NA	0.2/0	52.8/53.0	39.9/39.3	7.1/7.8	Gly $18 \mu \mathrm{~g}$ bid	MDI	24	(1)(2)(3)6 (7)
Martinez*			439/223	51.5/49.3	$\begin{gathered} 50.4 \pm 26.4 / \\ 53.2 \pm 25.5 \end{gathered}$	6.4/8.5	0/0	53.8/52.5	40.8/44.8	5.5/2.7	Gly $18 \mu \mathrm{~g}$ bid	MDI	24	①(2)(3) (7)
Craig LaForce	2016	US	222/219	61.7/60.3	NA	NA	NA	62.2/65.8	37.4/33.3	NA	Gly $15.6 \mu \mathrm{~g}$ bid	DPI	12	$\begin{aligned} & \text { (1)(2)(3)4 } \\ & \text { (5)(6)(78 } \end{aligned}$
Chen Wang	2015	Multinational	305/154	22.3/22.1	$\begin{aligned} & 38.3 \pm 20.78 / \\ & 38.3 \pm 21.13 \end{aligned}$	NA	0/0	49.2/53.2	50.8/46.8	0/0	Gly $50 \mu \mathrm{gqd}$	DPI	26	(1)(2)(3) 5 (7) 8
Sang Haak Lee	2015	Korea	133/129	NA	$\begin{gathered} 39.4 \pm 17.3 / \\ 42.5 \pm 18.3 \end{gathered}$	NA	NA	56.6/56.6	41.4/43.4	NA	A $400 \mu \mathrm{~g}$ bid	DPI	12	(1)(3)(4)(5) (6) (7)
NCT01316887	2014	Multinational	407/275	53.0/52.0	NA	NA					U $125 \mu \mathrm{gqd}$	DPI	24	(1)(2)(3)4 (5) (7)
Bartolome Celli	2014	Multinational	227/109	NA	$\begin{aligned} & 44.0 \pm 23.32 / \\ & 43.6 \pm 23.06 \end{aligned}$	NA	0/0	48/44	44/48	8/8	U $125 \mu \mathrm{gqd}$	DPI	24	(1) (2) (3)
J.F. Donohue	2013	Multinational	418/280	50.0/54.0	$\begin{gathered} 46.8 \pm 27.03 / \\ 47.2 \pm 27.21 \end{gathered}$	NA	0/0	46/43	41/48	13/10	$\mathrm{U} 62.5 \mu \mathrm{gqd}$	DPI	24	(1)(2)(3)4 (5) (6)(7)
Roopa Trivedi	2013	Multinational	69/68	57.0/53.0	$\begin{gathered} 47.5 \pm 18.6 / \\ 52.3 \pm 30.2 \end{gathered}$	NA	0/0	49/49	36/38	14/13	U $125 \mu \mathrm{gqd}$	DPI	12	(1) (2) (3)

Study	Year	country	N	smoker (\%) LAM	pack-years	$\beta 2$ - agonists use(\%)	COPD severity(\%)				Drug	Inhaler	Duration weeks	outcome
					Placebo		mild	moderate	severe	very severe				
Stephen I. Rennard	2013	Multinational	177/182	50.3/56.0	$\begin{gathered} \hline 54.2 \pm 27.7 / \\ 52.6 \pm 28.4 \end{gathered}$	61.0/54.4	0/1.1	44.6/62.1	54.2/36.8	0/0	A $400 \mu \mathrm{~g} \mathrm{bid}$	DPI	12	$\begin{aligned} & \text { (1)(2)(3)(4) } \\ & \text { (5)(6)(7) } 8 \end{aligned}$
NCT01323660	2012	Multinational	307	NA	NA	NA					U $125 \mu \mathrm{gqd}$	DPI	12	(1) (3)
NCT01328444	2012	Multinational	348	NA	NA	NA					$\mathrm{U} 125 \mu \mathrm{gqd}$	DPI	12	(1)(2) 3
Paul W. Jones	2012	Multinational	269/273	55.0/52.8	$\begin{gathered} 41.7 \pm 21.1 / \\ 38.9 \pm 18.3 \end{gathered}$	82.5/83.2	0/0	68.7/65.9	31.3/34.1	0/0	A $400 \mu \mathrm{~g} \mathrm{bid}$	DPI	24	$\begin{aligned} & \text { (1)(2)(344 } \\ & \text { (5)(6)(78 } \end{aligned}$
Edward Kerwin	2012	Multinational	525/268	45.3/46.3	$\begin{aligned} & 49.0 \pm 25.4 / \\ & 48.0 \pm 24.0 \end{aligned}$	54.9/53.4	0/0	63.2/64.9	35.6/34.3	1.1/0.7	Gly $50 \mu \mathrm{qqd}$	DPI	52	(1)(2)(3)4 (5) (7) 8
			627/216	45.1/45.4	$\begin{gathered} 40.4 \pm 21.0 / \\ 38.4 \pm 18.3 \end{gathered}$	68.6/59.7					A $200 \mu \mathrm{gqd}$	DPI	52	(1)(2)(5) (7) (8)
			600/204	37.0/38.7	$\begin{gathered} 57.8 \pm 29.9 / \\ 58.2 \pm 28.4 \end{gathered}$	74.3/87.0					A $200 \mu \mathrm{gqd}$	DPI	52	(1)(2)(5)(7) (8)
Anthony D’Urzo	2011	Multinational	550/267	32.7/34.1	NA	NA	0/0	60.2/62.2	39.5/37.1	0.4/0.7	Gly $50 \mu \mathrm{~g}$ qd	DPI	26	$\begin{aligned} & \text { (1)(2)(344 } \\ & \text { (5)(6)(7) } \end{aligned}$
Eric Bateman	2010	Multinational	667/653	34.8/36.1	NA	87/82					Tio $10 \mu \mathrm{gqd}$	SMI	48	(1)(2)(3)(5) (7) 8
E.D. Bateman	2010	Multinational	1952/1965	35.7/35.9	$\begin{aligned} & 46.0 \pm 26.1 / \\ & 45.0 \pm 26.5 \end{aligned}$	90.9/89.8					Tio $5 \mu \mathrm{qqd}$	SMI	48	(1)(2)(3)(7) (8)
Donald P . Tashkin	2008	Multinational	2986/3006	29.3/29.9	$\begin{gathered} 49.0 \pm 28.0 / \\ 48.4 \pm 27.9 \end{gathered}$	68.5/68.1	2/2	46/45	44/44	8/9	Tio $18 \mu \mathrm{gqd}$	DPI	192	(1)(2)(7)8
Gerard J. Criner	2008	US	80/86	52.5/41.9	$\begin{gathered} 45.6 \pm 26.7 / \\ 47.1 \pm 26.0 \end{gathered}$	68.8/57.0					Tio $18 \mu \mathrm{gqd}$	DPI	8	(1)(3)8
Gunnar Johansson	2008	Sweden	107/117	57.0/63.0	$\begin{aligned} & 31.4 \pm 11.9 / \\ & 31.6 \pm 12.2 \end{aligned}$	0.9/0	28.6/27.8	68.6/68.7	2.9/3.5	0/0	Tio $18 \mu \mathrm{gqd}$	DPI	12	(1)(3)
Daryl Freeman	2007	UK	191/183	NA	$\begin{gathered} 36.9 \pm 16.9 / \\ 37.9 \pm 17.7 \end{gathered}$	31.27/31.51	45.0	0.3	50.8/48.1	4.2/1.6	Tio $18 \mu \mathrm{gqd}$	DPI	12	(1)(3) 8
CKN Chan	2007	Canada	608/305	32.0/30.0	$\begin{gathered} 50.2 \pm 22.6 / \\ 51.0 \pm 26.3 \end{gathered}$	64.0/69.8					Tio $18 \mu \mathrm{gqd}$	DPI	48	(1) 7 (8)

Study	Year	country	N	smoker$(\%)$LAM	pack-years	$\begin{gathered} \beta 2 \text { - agonists } \\ \text { use }(\%) \end{gathered}$	COPD severity(\%)				Drug	Inhaler	Duration weeks	outcome
					lacebo		mild	moderate	severe	very severe				
D. Dusser	2006	France	500/510	27.0/24.0	NA	93.4/93.5					Tio $18 \mu \mathrm{gqd}$	DPI	48	(1)8)
R. Casaburi	2002	US	550/371	NA	$\begin{gathered} 63 \pm 31 / \\ 59 \pm 30 \end{gathered}$	99/99					Tio $18 \mu \mathrm{gqd}$	DPI	48	(1) (7) 88
Richard Casaburi	2000	US	279/191	NA	$\begin{gathered} 64.5 \pm 33.1 / \\ 60.5 \pm 30.2 \end{gathered}$	NA					Tio $18 \mu \mathrm{qqd}$	DPI	13	(1) (2) (3)

Outcomes: (1)all adverse events;(2)cardiovascular events;(3)trough $\mathrm{FEV}_{1} ;(4$ TDI focal score;(5)responder of TDI; 6 (SGRQ score; (7responder of SGRQ;8the number of patients with at least one moderate or severe exacerbations. Abbreviations: A: aclidinium; Tio: tiotropium; Gly: glycopyrronium; NA: not applicable. *: studies that one article reported two RCTs.

Table S2. The sensitivity analysis of included studies with regard to trough FEV ${ }_{1}$

| sensitivity analysis | Heterogeneity test
 tau 2 | | Effect size
 OMD and 95\%CI | P |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Wvall | 86.60% | 0.0023 | $0.122(0.100,0.144)$ | 0 |
| excluding Gary T. Ferguson I | 84.80% | 0.002 | $0.117(0.096,0.139)$ | 0 |
| excluding Gary T. Ferguson II | 87.10% | 0.0023 | $0.121(0.098,0.143)$ | 0 |
| excluding Brian J Lipworth | 87.10% | 0.0024 | $0.123(0.100,0.146)$ | 0 |
| excluding F.J. Martinez I | 86.90% | 0.0023 | $0.123(0.101,0.146)$ | 0 |
| excluding F.J. Martinez II | 85.90% | 0.0021 | $0.125(0.103,0.147)$ | 0 |
| excluding Craig LaForce | 87.20% | 0.0024 | $0.122(0.099,0.145)$ | 0 |
| excluding Chen Wang | 87.00% | 0.0023 | $0.120(0.097,0.142)$ | 0 |
| excluding Sang Haak Lee | 87.20% | 0.0023 | $0.122(0.099,0.144)$ | 0 |
| excluding NCT01316887 | 87.10% | 0.0023 | $0.120(0.098,0.143)$ | 0 |
| excluding Bartolome Celli | 86.90% | 0.0023 | $0.120(0.097,0.143)$ | 0 |
| excluding J.F. Donohue | 87.20% | 0.0024 | $0.122(0.099,0.145)$ | 0 |
| excluding Roopa Trivedi | 87.20% | 0.0023 | $0.121(0.098,0.143)$ | 0 |
| excluding Stephen I. Rennard | 86.70% | 0.0023 | $0.124(0.102,0.147)$ | 0 |
| excluding NCT01323660 | 85.90% | 0.0021 | $0.117(0.095,0.138)$ | 0 |
| excluding NCT01328444 | 87.20% | 0.0023 | $0.121(0.099,0.144)$ | 0 |
| excluding Paul W. Jones | 87.20% | 0.0024 | $0.122(0.099,0.144)$ | 0 |
| excluding Edward Kerwin | 85.40% | 0.002 | $0.126(0.105,0.148)$ | 0 |
| excluding Anthony D’Urzo | 81.60% | 0.0016 | $0.127(0.108,0.147)$ | 0 |
| excluding E.D. Bateman | 86.70% | 0.0026 | $0.123(0.099,0.147)$ | 0 |
| excluding Eric Bateman | 85.50% | 0.0026 | $0.120(0.096,0.144)$ | 0 |
| excluding Gunnar Johansson | 87.20% | 0.0023 | $0.122(0.099,0.144)$ | 0 |
| excluding Gerard J. Criner | 87.20% | 0.0023 | $0.122(0.099,0.144)$ | 0 |
| excluding Daryl Freeman | 87.20% | 0.0023 | $0.122(0.100,0.145)$ | 0 |
| excluding Richard Casaburi | 87.00% | 0.0024 | $0.120(0.097,0.143)$ | 0 |

Detailed search strategy

PubMed

Search: ((()(()(((COPD[Title/Abstract]) OR (Chronic Obstructive Pulmonary Disease[Title/Abstract])) OR (Chronic Obstructive Airway Disease[Title/Abstract])) OR (Chronic Obstructive Lung Disease[Title/Abstract])) OR (Airflow Obstruction, Chronic[Title/Abstract])) OR (Airflow Obstructions, Chronic[Title/Abstract])) OR (Chronic Airflow Obstructions[Title/Abstract])) OR (Chronic Airflow Obstruction[Title/Abstract])) OR (COBD[Title/Abstract])) OR ("Pulmonary Disease, Chronic Obstructive"[Mesh])) AND (()(()(()(()(((LAMA[Title/Abstract]) OR (long-acting muscarinic antagonists[Title/Abstract]))) OR (long acting muscarinic antagonists[Title/Abstract])) OR (aclidinium bromide[Title/Abstract])) OR (glycopyrronium bromide[Title/Abstract])) OR (tiotropium bromide[Title/Abstract])) OR (umeclidinium bromide[Title/Abstract])) OR

| (aclidinium[Title/Abstract])) | OR | (glycopyrronium[Title/Abstract])) | OR |
| :--- | :---: | :---: | :---: | ---: |
| (tiotropium[Title/Abstract])) | OR | (umeclidinium[Title/Abstract])) | OR |
| (revefenacin[Title/Abstract])) | OR | (Glycopyrrolate[Title/Abstract])) | OR |
| (TD-4208[Title/Abstract])) | OR | (GSK573719[Title/Abstract])) Filters: Randomized | |
| Controlled Trial | | | |

Embase

('chronic obstructive lung disease'/exp OR 'chronic airflow obstruction' OR 'chronic airway obstruction' OR 'chronic obstructive bronchitis' OR 'chronic obstructive bronchopulmonary disease' OR 'chronic obstructive lung disease' OR 'chronic obstructive lung disorder' OR 'chronic obstructive pulmonary disease' OR 'chronic obstructive pulmonary disorder' OR 'chronic obstructive respiratory disease' OR 'copd' OR 'lung chronic obstructive disease' OR 'lung disease, chronic obstructive' OR 'lung diseases, obstructive' OR 'obstructive lung disease' OR 'obstructive lung disease, chronic' OR 'obstructive pulmonary disease' OR 'obstructive respiratory disease' OR 'obstructive respiratory tract disease' OR 'pulmonary disease, chronic obstructive' OR 'pulmonary disorder, chronic obstructive') AND ('long-acting muscarinic antagonists' OR 'aclidinium bromide'/exp OR '3 [(hydroxy) di (thiophen 2 yl) acetyloxy] 1 (3 phenoxypropyl) 1 azabicyclo [2.2.2] octan 1 ylium bromide' OR '3 [[hydroxy (di 2 thienyl) acetyl] oxy] 1 (3 phenoxypropyl) 1 azoniabicyclo [2.2.2] octane bromide' OR '3 [[hydroxydi (thiophen 2 yl) acetyl] oxy] 1 (3 phenoxypropyl) 1 azoniabicyclo [2.2.2] octane bromide' OR '3 [hydroxybis (2 thienyl) acetoxy] 1 (3 phenoxypropyl) quinuclidinium bromide' OR 'aclidinium' OR 'aclidinium bromide' OR 'bretaris' OR 'bretaris genuair' OR 'eklira' OR 'eklira genuair' OR 'las 34273' OR 'las34273' OR 'tudorza' OR 'tudorza pressair' OR 'glycopyrronium'/exp OR '3 (2 cyclopentyl 2 hydroxy 2 phenylacetoxy) 1, 1 dimethylpyrrolidinium' OR '3 (2 cyclopentyl 2 hydroxy 2 phenylacetoxy) 1,1 dimethylpyrrolidinium 4-methylbenzenesulfonate monohydrate' OR '3 (2 cyclopentyl 2 hydroxy 2 phenylacetoxy) 1, 1 dimethylpyrrolidinium bromide' OR '3 (2 cyclopentyl 2 hydroxy 2 phenylacetoxy) 1,1 dimethylpyrrolidinium tosylate' OR 'ad 237' OR 'ad237' OR 'ahr 504' OR 'ahr504' OR 'asecryl' OR 'cuvposa' OR 'drm 04' OR 'drm04' OR 'enurev' OR 'enurev breezhaler' OR 'gastrodyn' OR 'gastrodyn inj' OR 'glersa' OR 'glycopyrrolate' OR 'glycopyrrolate inj' OR 'glycopyrronium' OR 'glycopyrronium bromide' OR 'glycopyrronium tosylate' OR 'glyrx-pf' OR 'lonhala magnair' OR 'mobinul' OR 'nodapton' OR 'nva 237' OR 'nva237' OR 'robinal' OR 'robinol' OR 'robinul' OR 'robinul forte' OR 'robinul inj.' OR 'robinul v' OR 'seebri' OR 'seebri breezhaler' OR 'seebri neohaler' OR 'sialanar' OR 'sroton' OR 'strodin' OR 'tarodyl' OR 'tarodyn' OR 'tovanor' OR 'tovanor breezhaler' OR 'tiotropium bromide'/exp OR '7beta [[hydroxybis (2 thienyl) acetyl] oxy] 9, 9 dimethyl 3 oxa 9 azoniatricyclo [3.3.1.0 2, 4] nonane bromide' OR '7beta [hydroxybis (2 thienyl) acetoxy] 9, 9 dimethyl 3 oxa 9 azoniatricyclo [3.3.1.0 2, 4] nonane bromide' OR 'ba 679 br' OR 'ba679 br' OR 'braltus' OR 'favynd' OR 'gregal' OR 'spiriva' OR 'spiriva handihaler' OR 'spiriva respimat' OR 'srivasso' OR 'tiotropium' OR 'tiotropium bromide' OR 'tiotropium bromide monohydrate' OR 'tiotrus' OR 'tiova rotacaps' OR 'umeclidinium'/exp OR '1 [2 (benzyloxy) ethyl] 4 (alpha hydroxybenzhydryl) quinuclidinium bromide' OR '1 [2 (benzyloxy) ethyl] 4 (hydroxydiphenylmethyl) 1 azoniabicyclo [2.2.2] octane' OR '1 [2 [(benzyl) oxy] ethyl] 4 [hydroxydi (phenyl) methyl] 1 azabicyclo [2.2.2] octan 1 ium bromide' OR '4 (hydroxydiphenylmethyl) 1 [2 (phenylmethoxy) ethyl] 1 azoniabicyclo [2.2.2] octane' OR 'ellipta' OR 'ellipta incruse' OR 'encruse ellipta' OR 'gsk 573719' OR 'gsk 573719a' OR 'gsk-573719' OR 'gsk-573719a' OR 'gsk573719' OR 'gsk573719a' OR 'incruse' OR 'incruse ellipta' OR 'rolufta' OR 'rolufta ellipta' OR 'umeclidinium' OR 'umeclidinium bromide' OR 'ipratropium bromide'/exp OR '3 (3 hydroxy 1 oxo 2 phenylpropoxy) 8
methyl 8 (1 methylethyl) 8 azoniabicyclo [3.2.1] octane bromide' OR 'aerovent' OR 'altyonz' OR 'altyonz inhaler' OR 'apo-ipravent' OR 'apovent' OR 'aproven' OR 'atem' OR 'atroaldo' OR 'atrodil' OR 'atronase' OR 'atrovent' OR 'atrovent aerosol' OR 'atrovent enfants' OR 'atrovent forte' OR 'atrovent hfa' OR 'atrovent inhaler' OR 'atrovent n' OR 'atrovent nasal' OR 'broncovent' OR 'inhalvent' OR 'ipra uni-dose' OR 'ipratropium' OR 'ipratropium bromide' OR 'ipratropium salt' OR 'ipravent' OR 'ipraxa' OR 'iprohalex' OR 'ipvent' OR 'itrop' OR 'n isopropylatropinium' OR 'narilet' OR 'nebu trop' OR 'nebu-trop' OR 'respontin' OR 'respontin nebules' OR 'rhinatec' OR 'rinatec' OR 'sch 1000' OR 'sch1000') AND ('placebo'/exp OR 'placebo' OR 'placebo gel' OR 'placebos') AND ('randomized controlled trial'/exp OR 'controlled trial, randomized' OR 'randomised controlled study' OR 'randomised controlled trial' OR 'randomized controlled study' OR 'randomized controlled trial' OR 'trial, randomized controlled')

Cochrane Library

ID Search Hits
\#1 MeSH descriptor: [Pulmonary Disease, Chronic Obstructive] explode all trees 5838
\#2 COPD 17120
\#3 Chronic Obstructive Pulmonary Disease 14572
\#4 COBD 90
\#5 Chronic Airflow Obstruction 742
\#6 Chronic Airflow Obstructions 5
\#7 Airflow Obstructions, Chronic 5
\#8 Airflow Obstruction, Chronic 742
\#9 Chronic Obstructive Lung Disease 11668
\#10 Chronic Obstructive Airway Disease 2042
\#11 \#1 OR \#2 OR \#3 OR \#4 OR \#5 OR \#6 OR \#7 OR \#8 OR \#9 OR \#10 22261
\#12 MeSH descriptor: [Muscarinic Antagonists] explode all trees 907
\#13 long-acting muscarinic antagonists 288
\#14 revefenacin 38
\#15 umeclidinium 388
\#16 tiotropium 2378
\#17 glycopyrronium 1042
\#18 aclidinium 346
\#19 umeclidinium bromide 110
\#20 tiotropium bromide 1453
\#21 glycopyrronium bromide 662
\#22 aclidinium bromide 309
\#23 long acting muscarinic antagonists 302
\#24 \#12 OR \#13 OR \#14 OR \#15 OR \#16 OR \#17 OR \#18 OR \#19 OR \#20 OR \#21 OR \#22 OR \#23
4493
\#25 \#11 AND \#24 2893
\#26 RCT 35501
\#27 Randomized Controlled Trial 1045668
\#28 \#26 OR \#27 1050695
\#29 \#25 AND \#28 1583

Web Of Science

\#1 TOPIC: (COBD) OR TOPIC: (Chronic Airflow
Obstructions) OR TOPIC: (COPD) OR TOPIC: (Chronic Obstructive Pulmonary
Disease) OR TOPIC: (Chronic Obstructive Airway Disease) OR TOPIC: (Chronic Obstructive
Lung Disease) OR TOPIC: (Airflow Obstruction, Chronic) OR TOPIC: (Airflow Obstructions, Chronic) OR TOPIC: (Chronic Airflow Obstruction)
Databases $=$ WOS, BIOSIS, KJD, MEDLINE, RSCI, SCIELO Timespan=All years
Search language $=$ Auto
\#2 TOPIC: (revefenacin) OR TOPIC: (long-acting muscarinic
antagonists) $O R$ TOPIC: (LAMA) OR TOPIC: (long acting muscarinic antagonists) $O R$ TOPIC: (aclidinium bromide) $O R$ TOPIC: (glycopyrronium bromide) $O R$ TOPIC: (tiotropium bromide) $O R$ TOPIC: (umeclidinium bromide) OR TOPIC: (aclidinium) OR TOPIC: (glycopyrronium) OR TOPIC: (tiotropium) OR TOPIC: (umeclidinium)
Databases $=$ WOS, BIOSIS, KJD, MEDLINE, RSCI, SCIELO Timespan=All years
Search language $=$ Auto
\#3 \#2 AND \#1
Databases = WOS, BIOSIS, KJD, MEDLINE, RSCI, SCIELO Timespan=All years
Search language $=$ Auto

