Skip to main content

Advertisement

Log in

Ischemic injury activates PTHrP and PTH1R expression in human ventricular cardiomyocytes

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The PTHrP/PTH1R signalling system induces calciotropic and myorelaxant effects on the vascular system and plays critical roles in the development of the cardiovascular system. In animal models, PTHrP exerts important effects on heart rate and contractility, particularly under ischemic conditions, while, in human hearts, the expression of PTHrP by cardiomyocytes remains to be defined in both normal and ischemic conditions. The present study has been conducted on 101 autoptical cases and confirmed on nine explanted hearts in order to analyze the expression of the PTHrP/PTH1R system by ventricular myocardium in respect to morphological aspects of the myocardial ischemic damage, myofiber hypertrophy and disarray, coronarosclerosis, age and sex. Immunohistochemistry showed positive cytoplasmic immunostaining for both PTHrP and PTH1R in ventricular cardiomyocytes. The expression levels of the PTHrP/PTH1R system resulted significantly increased (P = 0.0008 and P < 0.0001, respectively) in association with the myocardial ischemic damage and the presence of cardiomyocyte hypertrophy (P = 0.02 and P = 0.009 respectively). Conversely, increased expression levels of PTHrP alone were observed in myofiber disarray (P = 0.04), whereas PTH1R was augmented in coronarosclerosis (P = 0.004) and age (P = 0.001). Taken together, these results demonstrate that human ventricular cardiomyocytes express PTHrP and PTH1R and suggest that the activation of the PTHrP/PTH1R system could represent an aspect of the embryonic gene program typically reactivated by the myocardium when subjected to ischemia and/or hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bui TD, Shallal A, Malik AN, Al-Mahdawi S, Moscoso G, Bailey ME, Burton PB, Moniz C (1993) Parathyroid hormone related peptide gene expression in human fetal and adult heart. Cardiovasc Res 27:1024–1028

    Article  Google Scholar 

  2. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  PubMed  CAS  Google Scholar 

  3. Bulhak AA, Sjöquist PO, Xu CB, Edvinsson L, Pernow J (2006) Protection against myocardial ischaemia/reperfusion injury by PPAR-α activation is related to production of nitric oxide and endothelin-1. Basic Res Cardiol 101:244–252

    Article  PubMed  CAS  Google Scholar 

  4. Burley DS, Baxter GF (2007) B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Res Cardiol 102:529–541

    Article  PubMed  CAS  Google Scholar 

  5. Burton DW, Brandt DW, Deftos LJ (1994) Parathyroid hormone-related protein in the cardiovascular system. Endocrinology 135:253–261

    Article  PubMed  CAS  Google Scholar 

  6. Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlüter KD, Silve C, Stewart AF, Takane K Helwig JJ (2001) Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 134:1113–1136

    Article  PubMed  CAS  Google Scholar 

  7. Deftos LJ, Burton DW, Brandt DW (1993) Parathyroid hormone-like protein is a secretory product of atrial myocytes. J Clin Invest 92:727–735

    Article  PubMed  CAS  Google Scholar 

  8. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:393–411

    Article  PubMed  CAS  Google Scholar 

  9. Giannakoulas G, Karvounis H, Koliakos G, Damvopoulou T, Karamitos T, Papadopoulos C, Dalamanga E, Hatzitolios A, Parcharidis G, Louridas G (2006) Parathyroid hormone-related protein is reduced in severe chronic heart failure. Peptides 27:1894–1897

    Article  PubMed  CAS  Google Scholar 

  10. Gonon AT, Bulhak AA, Labruto F, Sjöquist PO, Xu CB, Pernow J (2007) Cardioprotection mediated by rosaglitazone, a peroxisome proliferator-activated receptor gamma ligand, in relation to nitric oxide. Basic Res Cardiol 102:80–89

    Article  PubMed  CAS  Google Scholar 

  11. Hara M, Liu YM, Zhen L, Cohen IS, Yu H, Danilo P Jr, Ogino K, Bilezikian JP, Rosen MR (1997) Positive chronotropic actions of parathyroid hormone and parathyroid hormone-related protein are associated with increase in the current, I(f), and the slope of the pacemaker potential. Circulation 96: 3704–3709

    PubMed  CAS  Google Scholar 

  12. Jansen J, Gres P, Umschlag C, Heinzel FR, Degenhardt H, Schlüter KD, Heusch G, Schulz R (2001) Parathyroid hormone-related peptide improves contractile function of stunned myocardium in rats and pigs. Am J Physiol Heart Circ Physiol 284:49–55

    Google Scholar 

  13. Kalinowski L, Dobrucki LW, Malinski T (2001) Nitric oxide as a second messenger in parathyroid hormone-related protein signaling. J Endocrinol 170:433–440

    Article  PubMed  CAS  Google Scholar 

  14. Lodge-Patch I (1951) The ageing of cardiac infarcts and its influence on cardiac rupture. Br Heart J 13:37–42

    Article  PubMed  CAS  Google Scholar 

  15. Lütteke D, Ross G, Abdallah Y, Schäfer C, Piper HM, Schlüter KD (2005) Parathyroid hormone-related peptide improves contractile responsiveness of adult rat cardiomyocytes with depressed cell function irrespectively of oxidative inhibition. Basic Res Cardiol 100:320–327

    Article  PubMed  Google Scholar 

  16. Maron BJ, Wolfson JK, Roberts WC (1992) Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol 70:785–790

    Article  PubMed  CAS  Google Scholar 

  17. Massfelder T, Helwig JJ, Stewart AF (1996) Parathyroid hormone-related protein as a cardiovascular regulatory peptide. Endocrinology 137:3151–3153

    Article  PubMed  CAS  Google Scholar 

  18. Ogino K, Burkhoff D, Bilezikian JP (1995) The hemodynamic basis for the cardiac effects of parathyroid hormone and parathyroid hormone-related protein. Endocrinology 136:3024–3030

    Article  PubMed  CAS  Google Scholar 

  19. Ogino K, Ogura K, Kinugasa Y, Furuse Y, Uchida K, Shimoyama M, Kinugawa T, Osaki S, Kato M, Tomikura Y, Igawa O, Hisatome I, Bilezikian JP, Shigemasa C (2002) Parathyroid hormone-related protein is produced in the myocardium and increased in patients with congestive heart failure. J Clin Endocrinol Metab 87:4722–4727

    Article  PubMed  CAS  Google Scholar 

  20. Pan CS, Jiang W, Wu SY, Zhao J, Pang YZ, Tang CS, Qi YF (2006) Potentiated response to adrenomedullin in myocardia and aortas in spontaneously hypertensive rat. Basic Res Cardiol 101:193–203

    Article  PubMed  CAS  Google Scholar 

  21. Pirola CJ, Wang HM, Kamyar A, Wu S, Enomoto H, Sharifi B, Forrester JS, Clemens TL, Fagin JA (1993) Angiotensin II regulates Parathyroid hormone-related protein expression in cultured rat aortic smooth muscle cells through transcriptional and post-transcriptional mechanisms. J Biol Chem 268:1987–1994

    PubMed  CAS  Google Scholar 

  22. Qian J, Lorenz JN, Maeda S, Sutliff RL, Weber C, Nakayama T, Colbert MC, Paul RJ, Fagin JA, Clemens TL (1999) Reduced blood pressure and increased sensitivity of the vasculature to parathyroid hormone-related protein (PTHrP) in transgenic mice overexpressing the PTHH/PTHrP receptor in vascular smooth muscle. Endocrinology 140:1826–1833

    Article  PubMed  CAS  Google Scholar 

  23. Qian J, Colbert MC, Witte D, Kuan CY, Gruenstein E, Osinka H, Lanske B, Kronenberg HM, Clemens T (2003) Midgestational lethality in mice lacking the Parathyroid hormone (PTH)/PTH-related peptide receptor is associated with abrupt cardiomyocyte death. Endocrinology 144:1053–1061

    Article  PubMed  CAS  Google Scholar 

  24. Schlüter KD, Katzer C, Frischkopf K, Wenzel S, Taimor G, Piper HM (2000) Expression, release, and biological activity of parathyroid hormone-related protein from coronary endothelial cells. Circ Res 86:946–951

    PubMed  Google Scholar 

  25. Schorr K, Taimor G, Degenhardt H, Weber K, Schlüter KD (2003) Parathyroid hormone-related peptide is induced by stimulation of alpha 1A-adrenoceptors and improves resistance against apoptosis in coronary endothelial cells. Mol Pharmacol 63:111–118

    Article  PubMed  CAS  Google Scholar 

  26. Seeland U, Selejan S, Engelhardt S, Müller P, Lohse MJ, Böhm M (2007) Interstitial remodeling in β1-adrenergic receptor transgenic mice. Basic Res Cardiol 102:393–411

    Article  Google Scholar 

  27. Yang XM, Philipp S, Downey JM, Cohen MV (2006) Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 101:311–318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Monego MD, PhD.

Additional information

P. Di Nardo and A. Capelli contributed equally to this work.

Returned for 1. Revision: 5 May 2008 1. Revision received: 31 October 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monego, G., Arena, V., Pasquini, S. et al. Ischemic injury activates PTHrP and PTH1R expression in human ventricular cardiomyocytes. Basic Res Cardiol 104, 427–434 (2009). https://doi.org/10.1007/s00395-008-0774-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0774-4

Keywords

Navigation