Skip to main content

Advertisement

Log in

Normal-range albuminuria does not exclude nephropathy in diabetic children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

An Erratum to this article was published on 10 April 2010

Abstract

Clinically detectable diabetic nephropathy (DN) begins with the development of microalbuminuria (MA). However, early renal dysfunction may be overlooked despite using that method. On the other hand, the gold standard in DN detection—that is, renal biopsy—is highly invasive. The aim of this study was to evaluate the level of neutrophil-gelatinase-associated lipocalin (NGAL) and interleukin (IL)-18 and their relations to albumin excretion rate (AER) in children with normal-range albuminuria, e.g. in those considered as not presenting diabetic nephropathy. The study group consisted of 22 children (age 12.7 ± 3.5 years) with type 1 diabetes mellitus (T1DM). Long-term glycemic control was assessed on hemoglobin A1c (HbA1c) levels (8.52 ± 1.78%). All patients presented normal estimated glomerular filtration rate (eGFR) (141 ± 23 ml/min/1.73 m2) and normal urinary albumin excretion (13.09 ± 7.63 mg/24 h). Fourteen healthy children served as a control group. Children with T1DM showed increased NGAL values with respect to controls—interestingly, both in serum (sNGAL) (867.43 ± 341.98 vs. 655.29 ± 196.17 ng/ml; p = 0.04) and in urine (uNGAL) (420.04 ± 374.16 vs. 156.53 ± 185.18 ng/ml, p = 0.04). IL-18 levels were not different in both groups both in serum (58.52 ± 20.11 vs. 69.79 ± 58.76 ng/ml; NS) and in urine (14.53 ± 12.74 vs. 14.60 ± 10.92 ng/ml; NS). Despite the relatively small study group, the positive correlation between sNGAL and AER was found [AER (mg/24 h) = 3.1893 + 0.01141 × sNGAL (ng/ml); r = 0.51; p = 0.014] as well as between uNGAL and AER [AER (mg/24 h) = 8.7538 + 0.01032 × uNGAL (ng/ml); r = 0.51; p = 0.016]. No relationship between sNGAL and uNGAL, and GFR and HbA1c were found. Normal-range albuminuria does not exclude diabetic nephropathy defined as increased sNGAL and uNGAL concentration. NGAL measurement can be more sensitive than MA and may become a useful tool for evaluating renal involvement in diabetic children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Daneman D (2006) Type 1 diabetes. Lancet 367:847–858

    Article  CAS  PubMed  Google Scholar 

  2. DIAMOND Project Group (2006) Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet Med 23:857–866

    Article  Google Scholar 

  3. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25:496–501

    Article  CAS  PubMed  Google Scholar 

  4. Ballard DJ, Humphrey LL, Melton LJ 3rd, Frohnert PP, Chu PC, O’Fallon WM, Palumbo PJ (1988) Epidemiology of persistent proteinuria in type II diabetes mellitus. Population-based study in Rochester, Minnesota. Diabetes 37:405–412

    Article  CAS  PubMed  Google Scholar 

  5. Rossing P, Hougaard P, Borch-Johnsen K, Parving HH (1996) Predictors of mortality in insulin dependent diabetes: 10 years observational follow up study. BMJ 313:779–784

    CAS  PubMed  Google Scholar 

  6. Harvey JN, Allagoa B (2004) The long-term renal and retinal outcome of childhood-onset type 1 diabetes. Diabet Med 21:26–31

    Article  CAS  PubMed  Google Scholar 

  7. Raile K, Galler A, Hofer S, Herbst A, Dunstheimer D, Busch P, Holl RW (2007) Diabetic nephropathy in 27, 805 children, adolescents and adults with type 1 diabetes: effect of diabetes duration, HbA1c, hypertension, dyslipidemia, diabetes onset and gender. Diabetes Care 30:2523–2528

    Article  PubMed  Google Scholar 

  8. Thomas MC, Burns WC, Cooper ME (2005) Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis 12:177–186

    Article  CAS  PubMed  Google Scholar 

  9. Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage? J Am Soc Nephrol 17:2974–2984

    Article  CAS  PubMed  Google Scholar 

  10. Phillips AO (2003) The role of renal proximal tubular cells in diabetic nephropathy. Curr Diab Rep 3:491–496

    Article  PubMed  Google Scholar 

  11. Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH 3rd, Ma Q, Dastrala S, Bennett M, Mitsnefes M, Devarajan P (2007) NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol 22:2089–2095

    Article  PubMed  Google Scholar 

  12. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238

    Article  CAS  PubMed  Google Scholar 

  13. Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, Jain A, Bullington N, Devarajan P, Investigators of the HUS-SYNSORB Pk Multicenter Clinical Trial (2006) Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 21:989–994

    Article  PubMed  Google Scholar 

  14. Suzuki M, Wiers KM, Klein-Gitelman MS, Haines KA, Olson J, Onel KB, O’Neil K, Passo MH, Singer NG, Tucker L, Ying J, Devarajan P, Brunner HI (2008) Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis. Pediatr Nephrol 23:403–412

    Article  PubMed  Google Scholar 

  15. Bolignano D, Coppolino G, Campo S, Aloisi C, Nicocia G, Frisina N, Buemi M (2008) Urinary neutrophil gelatinase-associated lipocalin (NGAL) is associated with severity of renal disease in proteinuric patients. Nephrol Dial Transplant 23:414–416

    Article  CAS  PubMed  Google Scholar 

  16. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432

    CAS  PubMed  Google Scholar 

  17. Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, Buemi M (2008) Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis 52:595–605

    Article  CAS  PubMed  Google Scholar 

  18. Navarro JF, Mora C (2005) Role of inflammation in diabetic complications. Nephrol Dial Transplant 20:2601–2604

    Article  PubMed  Google Scholar 

  19. Lin J, Hu FB, Rimm EB, Rifai N, Curhan GC (2006) The association of serum lipids and inflammatory biomarkers with renal function in men with type II diabetes mellitus. Kidney Int 69:336–342

    Article  CAS  PubMed  Google Scholar 

  20. Mühl H, Pfeilschifter J (2004) Interleukin-18 bioactivity: a novel target for immunopharmacological anti-inflammatory intervention. Eur J Pharmacol 500:63–71

    Article  PubMed  Google Scholar 

  21. Drummond K, Mauer M, International Diabetic Nephropathy Study Group (2002) The early natural history of nephropathy in type 1 diabetes. II. Early renal structural changes in type 1 diabetes. Diabetes 51:1580–1587

    Article  CAS  PubMed  Google Scholar 

  22. Schultz CJ, Konopelska-Bahu T, Dalton RN, Carroll TA, Stratton I, Gale EA, Neil A, Dunger DB (1999) Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Study Group. Diabetes Care 22:495–502

    Article  CAS  PubMed  Google Scholar 

  23. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Fazio MR, Nicocia G, Buemi M (2009) Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res 32:91–98

    Article  CAS  PubMed  Google Scholar 

  24. Araki S, Haneda M, Koya D, Sugimoto T, Isshiki K, Chin-Kanasaki M, Uzu T, Kashiwagi A (2007) Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: an observational follow-up study. Diabetologia 50:867–873

    Article  CAS  PubMed  Google Scholar 

  25. Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, Binder C, Parving HH (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105

    Article  PubMed  Google Scholar 

  26. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS (2003) Regression of microalbuminuria in type 1 diabetes. N Engl J Med 348:2285–2293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Mrs. Milena Kornaszewska for her linguistic assistance and Marek Niedziela M.D., Ph.D for his kind contribution to improvement of our discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Zachwieja.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00467-010-1527-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachwieja, J., Soltysiak, J., Fichna, P. et al. Normal-range albuminuria does not exclude nephropathy in diabetic children. Pediatr Nephrol 25, 1445–1451 (2010). https://doi.org/10.1007/s00467-010-1443-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1443-z

Keywords

Navigation