Skip to main content
Log in

Hypertrophy of the lumbar ligamentum flavum is associated with inflammation-related TGF-β expression

  • Experimental research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Despite the significance of hypertrophy of the ligamentum flavum (HLF) in the disease progress of neurogenic claudication, the cellular mechanisms underlying the gradual fibrotic thickening of the ligamentum flavum remain poorly understood. The aim of our study was to get insight into the contribution of inflammatory mechanisms to the development of hypertrophy.

Methods

Specimens of hypertrophied ligamenta flava were obtained at surgery from 20 patients with acquired lumbar osteoligamentous spinal canal stenosis from the central part of the ligament. Paraffin sections were stained with hematoxylin and eosin and Elastica van Gieson to evaluate extracellular matrix architecture, and immunohistochemistry was performed to characterize the inflammatory reaction and the sources of transforming growth factor beta (TGF-β) expression. Sections of normal ligamenta flava obtained from corresponding anatomical sites and stained in parallel served as a control.

Results

HLF was characterized by a considerable distortion of the elastic matrix and fibrotic transformation by extracellular collagen deposition. All specimens showed highly inflammatory cellular infiltrates confined to regions exhibiting marked degeneration of the elastic matrix composed mainly of macrophages, scattered T lymphocytes, and neovascularization, thus representing a chronic inflammation. Surprisingly, macrophages as well as vascular endothelial cells but not fibroblasts showed a strong expression of TGF-β, a strong inducer of extracellular collagen deposition.

Conclusions

Macrophages were identified as a major cellular source of TGF-β in advanced HLF and may perpetuate further hypertrophy. This finding suggests that modulating the immune response locally or systemically could prove to be effective for impeding the disease progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1001–1110

    Google Scholar 

  2. Benoist M (2003) Natural history of the aging spine. Eur Spine J 12(suppl 2):S86–S89

    Article  PubMed  Google Scholar 

  3. Cutroneo KR, Sterling KM Jr (2004) How do glucocorticoids compare to sense oligos containing TGF-β element as inhibitors of collagen synthesis? J Cell Biochem 92:6–15

    Article  CAS  PubMed  Google Scholar 

  4. Cutroneo KR (2007) TGF-β-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen 15:54–60

    Article  Google Scholar 

  5. Dockerty MB, Love JG (1940) Thickening and fibrosis (so-called hypertrophy) of the ligamentum flavum: a pathologic study of fifty cases. Proc Staff Meet Mayo Clin 15:161–166

    Google Scholar 

  6. Duca L, Blanchevoye C, Cantarelli B, Ghoneim C, Dedieu S, Delacoux F, Hornebeck W, Hinek A, Martiny L, Debelle L (2007) The elastin receptor complex transduces signals through the catalytic activity of its Neu-1 subunit. J Biol Chem 282:12484–12491

    Article  CAS  PubMed  Google Scholar 

  7. Duftner C, Seiler R, Dejaco-C FG, Schirmer M (2006) Increasing evidence for immune-mediated processes and new therapeutic approaches in abdominal aortic aneurysms—a review. Ann NY Acad Sci 1085:331–338

    Article  CAS  PubMed  Google Scholar 

  8. Frank S, Madlener M, Werner S (1996) Transforming growth factors β1, β2, and β3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem 271:10188–10193

    Article  CAS  PubMed  Google Scholar 

  9. Fukuyama S, Nakamura T, Ikeda T, Takagi K (1995) The effect of mechanical stress on hypertrophy of the lumbar ligamentum flavum. J Spinal Disord 8:126–130

    Article  CAS  PubMed  Google Scholar 

  10. Gauss-Müller V, Kleinman HK, Martin GR, Schiffman E (1980) Role of attachment factors and attractants in fibroblast chemotaxis. J Lab Clin Med 96:1071–1080

    PubMed  Google Scholar 

  11. Hantash BM, Zhao L, Knowles JA, Lorenz HP (2008) Adult and fetal wound healing. Front Biosci 13:51–61

    Article  CAS  PubMed  Google Scholar 

  12. Houghton AM, Quintero PA, Perkins DL, Kobayashi DK, Kelley DG, Marconcini LA, Mecham RP, Senior RM, Shapiro SD (2006) Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest 116:753–759

    Article  CAS  PubMed  Google Scholar 

  13. Hunninghake GW, Davidson JM, Rennard S, Szapiel S, Gadek JE, Crystal RG (1981) Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science 212:925–926

    Article  CAS  PubMed  Google Scholar 

  14. Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62:153–188

    Article  CAS  PubMed  Google Scholar 

  15. Kosaka H, Sairyo K, Biyani A, Leaman D, Yeasting R, Higashino K, Sakai T, Katoh S, Sano T, Goel VK, Yasui N (2007) Pathomechanism of loss of elasticity and hypertrophy of lumbar ligamentum flavum in elderly patients with lumbar spinal canal stenosis. Spine 32:2805–2811

    Article  PubMed  Google Scholar 

  16. Larbi A, Levesque G, Robert L, Gagné D, Douziech N, Fülöp T (2005) Presence and active synthesis of the 67 kDa elastin-receptor in human circulating white blood cells. Biochem Biophys Res Commun 332:787–792

    Article  CAS  PubMed  Google Scholar 

  17. Marui T, Niyibizi C, Georgescu HI, Cao M, Kavalkovich KW, Levine RE, Woo SL (1997) Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res 15:18–23

    Article  CAS  PubMed  Google Scholar 

  18. Nachemson AL, Evans JH (1968) Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J Biomech 1:211–220

    Article  CAS  PubMed  Google Scholar 

  19. Nakatani T, Marui T, Hitora T, Doita M, Nishida K, Kurosaka M (2002) Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-β1. J Orthop Res 20:1380–1386

    Article  CAS  PubMed  Google Scholar 

  20. Okuda T, Baba I, Fujimoto Y, Tanaka N, Sumida T, Manabe H, Hayashi Y, Ochi M (2004) The pathology of ligamentum flavum in degenerative lumbar disease. Spine 29:1689–1697

    Article  PubMed  Google Scholar 

  21. Park JB, Lee JK, Park SJ, Riew D (2005) Hypertrophy of ligamentum flavum in lumbar spinal stenosis associated with increased proteinase inhibitor concentration. J Bone Joint Surg Am 87:2750–2757

    Article  PubMed  Google Scholar 

  22. Postacchini F, Gumina S, Cinotti G, Perugia D, DeMartino C (1994) Ligamenta flava in lumbar disc herniation and spinal stenosis. Spine 19:917–922

    Article  CAS  PubMed  Google Scholar 

  23. Privitera S, Prody CA, Callahan JW, Hinek A (1998) The 67-kDa enzymatically inactive alternatively spliced variant of beta-galactosidase is identical to the elastin/laminin-binding protein. J Biol Chem 273:6319–6326

    Article  CAS  PubMed  Google Scholar 

  24. Ramani PS, Perry RH, Tomlinson BE (1975) Role of ligamentum flavum in the symptomatology of prolapsed lumbar intervertebral discs. J Neurol Neurosurg Psychiatry 38:550–557

    Article  CAS  PubMed  Google Scholar 

  25. Ramsay RH (1966) The anatomy of the ligamenta flava. Clin Orthop 44:129–140

    Google Scholar 

  26. Rhett JM, Ghatnekar GS, Palatinus JA, O’Quinn M, Yost MJ, Gourdie RG (2008) Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol 26:173–180

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2007) TGF-β signaling in vascular fibrosis. Cardiovasc Res 74:196–206

    Article  CAS  PubMed  Google Scholar 

  28. Sairyo K, Biyani A, Goel V, Leaman D, Booth R, Thomas J, Gehling D, Vishnubhotla SL, Long R, Ebraheim N (2005) Pathomechanism of ligamentum flavum hypertrophy: a multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments. Spine 30:2649–2656

    Article  PubMed  Google Scholar 

  29. Sairyo K, Biyani A, Goel VK, Leaman DW, Booth R, Thomas J, Ebraheim NA, Cowgill IA, Mohan SE (2007) Lumbar ligamentum flavum hypertrophy is due to accumulation of inflammation-related scar tissue. Spine 32:E340–E347

    Article  PubMed  Google Scholar 

  30. Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66:859–862

    Article  CAS  PubMed  Google Scholar 

  31. Senior RM, Griffin GL, Mecham RP (1982) Chemotactic responses of fibroblasts to tropoelastin and elastin-derived peptides. J Clin Invest 70:614–618

    Article  CAS  PubMed  Google Scholar 

  32. Senior RM, Griffin GL, Mecham RP, Wrenn DS, Prasad KU, Urry DW (1984) Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol 99:870–874

    Article  CAS  PubMed  Google Scholar 

  33. Stramer BM, Mori R, Martin P (2007) The inflammation–fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Invest Dermatol 127:1009–1017

    Article  CAS  PubMed  Google Scholar 

  34. Szpalski M, Gunzburg R (2003) Lumbar spinal stenosis in the elderly: an overview. Eur Spine J 12(suppl 2):170–175

    Article  Google Scholar 

  35. Verbiest H (1954) A radicular syndrome from developmental narrowing of the lumbar vertebral canal. J Bone Joint Surg Br 36:230–237

    PubMed  Google Scholar 

  36. Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 118:211–215

    Article  CAS  PubMed  Google Scholar 

  37. Yahia LH, Garzon S, Strykowski H, Rivard CH (1990) Ultrastructure of the human interspinous ligament and ligamentum flavum. Spine 15:262–268

    Article  CAS  PubMed  Google Scholar 

  38. Yoshida M, Shima K, Taniguchi Y, Tamaki T, Tanaka T (1992) Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Spine 17:1353–1360

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Löhr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhr, M., Hampl, J.A., Lee, J.Y. et al. Hypertrophy of the lumbar ligamentum flavum is associated with inflammation-related TGF-β expression. Acta Neurochir 153, 134–141 (2011). https://doi.org/10.1007/s00701-010-0839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-010-0839-7

Keywords

Navigation