Skip to main content
Log in

Adrenaline induces mitochondrial biogenesis in rat liver

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We studied the effects of adrenaline administration and depletion (induced by reserpine) on rat liver oxidative metabolism. We showed that adrenaline increases, and reserpine decreases aerobic capacity (inferred by cytochrome oxidase activity) in tissue modifying the hepatic content of mitochondrial proteins without changing mitochondrial aerobic capacity. The changes in tissue cytochrome oxidase activity, which agreed with the expression levels of factors involved in mitochondrial biogenesis, such as PGC-1, NRF-1, and NRF-2, were associated with similar changes in tissue and mitochondrial State 3 respiration. Adrenaline and reserpine induced extensive lipid and protein oxidative damage in tissue and mitochondria. The increase in H2O2 release by respiring mitochondria and the decrease in the activities of the antioxidant enzymes glutathione peroxidase and reductase contributed to the reserpine effect on oxidative damage. The adrenaline effect is more difficult to explain, since the hormone increased the antioxidant enzyme activities but, in respiring mitochondria, increased ROS release rate in the presence of succinate and decreased it in the presence of pyruvate/malate. These opposite changes were due to the increased content of the autoxidizable electron carrier located at complex III and decreased content of that located at complex I. Our data suggest that adrenaline can be involved in the mitochondrial population adaptation which verify in conditions in which an increased body energy expenditure verify such as cold exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Bloushi S, Safer AM, Afzal M, Mousa SA (2009) Green tea modulates reserpine toxicity in animal models. J Toxicol Sci 34:77–87

    Article  CAS  Google Scholar 

  • Avakian EV, Horvath SM, Colburn RW (1984) Influence of age and cold stress on plasma catecholamine levels in rats. J Auton Nerv Syst 10:127–133

    Article  CAS  Google Scholar 

  • Barré H, Bailly L, Rouanet JL (1987) Increased oxidative capacity in skeletal muscles from acclimated ducklings: a comparison with rats. Comp Biochem Physiol 88B:519–522

    Google Scholar 

  • Bru-Mercier G, Deroubaix E, Rousseau D, Coulombe A, Renaud JF (2002) Depressed transient outward potassium current density in catecholamine-depleted rat ventricular myocytes. Am J Phys 282:H1237–H1247. https://doi.org/10.1152/ajpheart.00180.2001

    CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–499

    Article  CAS  Google Scholar 

  • Castrejon-Sosa M, Villalobos-Molina R, Guinzberg R, Piña E (2002) Adrenaline (via alpha(1B)-adrenoceptors) and ethanol stimulate OH radical production in isolated rat hepatocytes. Life Sci 71:2469–2474

    Article  CAS  Google Scholar 

  • Díaz-Cruz A, Guinzberg R, Guerra R, Vilchis M, Carrasco D, García-Vázquez FJ, Piña E (2007) Adrenaline stimulates H2O2 generation in liver via NADPH oxidase. Free Radic Res 41:663–672. https://doi.org/10.1080/10715760701268751

    Article  Google Scholar 

  • Ding X, Lichti K, Kim I, Gonzalez FJ, Staudinger JL (2006) Regulation of constitutive androstane receptor and its target genes by fasting, cAMP, hepatocyte nuclear factor α, and the coactivator peroxisome proliferator-activated receptor γ coactivator-1α. J Biol Chem 281:26540–26551. https://doi.org/10.1074/jbc.M600931200

    Article  CAS  Google Scholar 

  • Flohé L, Günzler WA (1984) Glutathione peroxidase. Methods Enzymol 105:115–121

    Google Scholar 

  • Goglia F, Liverini G, Lanni A, Iossa S, Barletta A (1989) The effect of thyroid state on respiratories activities of three rat liver mitochondrial fractions. Mol Cell Endocrinol 62:41–46

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16:1323–1367. https://doi.org/10.1089/ars.2011.4123

    Article  CAS  Google Scholar 

  • Hassan WA, Rahman TA, Aly MS, Shahat AS (2013) Alterations in monoamines level in discrete brain regions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism. Int J Dev Neurosci 31:311–318. https://doi.org/10.1016/j.ijdevneu.2013.03.003

    Article  CAS  Google Scholar 

  • Heath RL, Tappel AL (1976) A new sensitive assay for the measurement of hydroperoxides. Anal Biochem 76:184–191

    Article  CAS  Google Scholar 

  • Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183. https://doi.org/10.1038/35093131

    Article  CAS  Google Scholar 

  • Hodis J, Kutinová-Canová N, Potmesil P, Kameníková L, Kmonícková E, Zídek Z, Farghali H (2007) The role of adrenergic agonists on glycogenolysis in rat hepatocyte cultures and possible involvement of NO. Physiol Res 56:419–425

    CAS  Google Scholar 

  • Hyslop PA, Sklar LA (1984) A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes. Anal Biochem 141:280–286

    Article  CAS  Google Scholar 

  • Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci U S A 104:12017–12022. https://doi.org/10.1073/pnas.0705070104

    Article  Google Scholar 

  • Jakovcic S, Swift HH, Gross NJ, Rabinowitz M (1978) Biochemical and stereological analysis of rat liver mitochondria in different thyroid states. J Cell Biol 77:887–901

    Article  CAS  Google Scholar 

  • Knutti D, Kressler D, Kralli A (2001) Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci U S A 98:9713–9718. https://doi.org/10.1073/pnas.171184698

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosi. PLoS Biol 3:e101. https://doi.org/10.1371/journal.pbio.0030101

    Article  Google Scholar 

  • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801. https://doi.org/10.1038/nature00904

    Article  CAS  Google Scholar 

  • Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H (1968) Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem 242:844–847

    Google Scholar 

  • Peralta JG, Finocchietto PV, Converso D, Schöpfer F, Carreras MC, Poderoso JJ (2003) Modulation of mitochondrial nitric oxide synthase and energy expenditure in rats during cold acclimation. Am J Phys 284:H2375–H2383. https://doi.org/10.1152/ajpheart.00785.2002

    CAS  Google Scholar 

  • Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464. https://doi.org/10.1074/jbc.R113.472936

    Article  CAS  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signalling. Cell Signal 24:981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver Z (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53. https://doi.org/10.1016/j.febslet.2007.11.034

    Article  CAS  Google Scholar 

  • Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576:1–14

    Article  CAS  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638. https://doi.org/10.1152/physrev.00025.2007

    Article  CAS  Google Scholar 

  • Schild L, Reinheckel T, Wiswedel I, Augustin W (1997) Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: involvement of oxidative protein modification. Biochem J 328:205–210

    Article  CAS  Google Scholar 

  • Shukla VH, Dave KR, Katyare SS (2000) Effect of catecholamine depletion on oxidative energy metabolism in rat liver, brain and heart mitochondria; use of reserpine. Comp Biochem Physiol C 127:79–90

    CAS  Google Scholar 

  • Stoffer SS, Jiang NS, Gorman CA, Picker GM (1973) Plasma catecholamines in hypothyroidism and hyperthyroidism. J Clin Endocrinol Metab 36:587–589

    Article  CAS  Google Scholar 

  • Storm H, van Hardelved C, Kassenaar AAH (1981) Thyroid hormone-catecholamines interrelationship during exposure to cold. Acta Endocrinol 97:91–97

    CAS  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408. https://doi.org/10.1016/j.cell.2006.09.024

    Article  CAS  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  CAS  Google Scholar 

  • Venditti P, De Rosa R, Di Meo S (2003) Effect of thyroid state on H2O2 production by rat liver mitochondria. Mol Cell Endocrinol 205:185–192

    Article  CAS  Google Scholar 

  • Venditti P, De Rosa R, Di Meo S (2004) Effect of cold-induced hyperthyroidism on H2O2 production and susceptibility to stress conditions of rat liver mitochondria. Free Radic Biol Med 36:348–358. https://doi.org/10.1016/j.freeradbiomed.2003.11.012

    Article  CAS  Google Scholar 

  • Venditti P, Pamplona R, Ayala V, De Rosa R, Caldarone G, Di Meo S (2006) Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage. J Exp Biol 209:817–825. https://doi.org/10.1242/jeb.02045

    Article  CAS  Google Scholar 

  • Venditti P, Bari A, Di Stefano L, Di Meo S (2008) Tri-iodothyronine treatment differently affects liver metabolic response and oxidative stress in sedentary and trained rats. J Endocrinol 197:65–74. https://doi.org/10.1677/JOE-07-0625

    Article  CAS  Google Scholar 

  • Venditti P, Bari A, Di Stefano L, Cardone A, Della Ragione F, D’Esposito M, Di Meo S (2009) Involvement of PGC-1, NRF-1, and NRF-2 in metabolic response by rat liver to hormonal and environmental signals. Mol Cell Endocrinol 305:22–29. https://doi.org/10.1016/j.mce.2009.02.009

    Article  CAS  Google Scholar 

  • Venditti P, Napolitano G, Barone D, Di Meo S (2014) Effect of training and vitamin E administration on rat liver oxidative metabolism. Free Radic Res 48:322–332. https://doi.org/10.3109/10715762.2013.867959

    Article  CAS  Google Scholar 

  • Zaninovich AA, Rebagliati I, Raíces M, Ricci C, Hagmüller K (2003) Mitochondrial respiration in muscle and liver from cold-acclimated hypothyroid rats. J Appl Physiol (1985) 95:1584–1590. https://doi.org/10.1152/japplphysiol.00363.2003

    Article  CAS  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by grants from Italian Ministry of University and Scientific and Technological Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Venditti.

Ethics declarations

Declaration of interest

The authors declare no competing or financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napolitano, G., Barone, D., Di Meo, S. et al. Adrenaline induces mitochondrial biogenesis in rat liver. J Bioenerg Biomembr 50, 11–19 (2018). https://doi.org/10.1007/s10863-017-9736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9736-6

Keywords

Navigation