Skip to main content

Advertisement

Log in

Preterm Birth and Hypertension: Is There a Link?

  • Pathogenesis of Hypertension (W Elliott and R Santos, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Factors in perinatal life have recently been recognized as determinants of later life health and diseases, especially hypertension. The detection of higher values of blood pressure in preterm-born individuals reaching adulthood has turned the attention to preterm birth-related complications and deleterious conditions as factors triggering early cardiovascular alterations, which may increase hypertension risk and associated complications in this population. Further, preterm birth is frequently associated with pregnancy complications such as lower placental perfusion, increased blood pressure in the mother and preeclampsia, often resulting in intrauterine growth restriction. These conditions further impact the risk of hypertension in the offspring whether through inherited genetic factors or perpetuated pathophysiology leading to preeclampsia, preterm delivery, and chronic hypertension. In this review, we will highlight evidence of developmental cardiovascular alterations and potential mechanisms linking preterm birth to the risk of hypertension and cardiovascular diseases into adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a serial cross-sectional study from 1994 to 2011. Lancet. 2014;383(9932):1912–9. doi:10.1016/S0140-6736(14)60688-7.

    Article  PubMed  Google Scholar 

  2. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA. 2010;303(20):2043–50. doi:10.1001/jama.2010.650.

    Article  CAS  PubMed  Google Scholar 

  3. Lewandowski AJ, Davis EF, Yu G, Digby JE, Boardman H, Whitworth P, et al. Elevated blood pressure in preterm-born offspring associates with a distinct antiangiogenic state and microvascular abnormalities in adult life. Hypertension. 2015;65(3):607–14. doi:10.1161/HYPERTENSIONAHA.114.04662. Demonstration that preterm-born individuals exhibit an enhanced antiangiogenic state in adult life that is specifically related to elevations in blood pressure. The association seems to be mediated through capillary rarefaction and is independent of other cardiovascular structural and functional differences in the offspring. This study is among the first clinical study reporting anti-angiogenic factors in elevated blood pressure in subjects born preterm, which supports previous experimental studies.

    Article  CAS  PubMed  Google Scholar 

  4. Sipola-Leppänen M, Karvonen R, Tikanmäki M, Matinolli H-M, Martikainen S, Pesonen A-K, et al. Ambulatory blood pressure and its variability in adults born preterm. Hypertension. 2015;65(3):615–21. doi:10.1161/hypertensionaha.114.04717. Observational cohort study assessing through 24-hour ambulatory BP monitoring 114 preterm- and 103 term-born young adults and showing higher 24-hour and awake systolic and diastolic BP, and higher sleep systolic BP following very preterm birth (below 34 weeks).

    Article  PubMed  Google Scholar 

  5. Davis EF, Lewandowski AJ, Aye C, Williamson W, Boardman H, Huang RC, et al. Clinical cardiovascular risk during young adulthood in offspring of hypertensive pregnancies: insights from a 20-year prospective follow-up birth cohort. BMJ Open. 2015;5(6):e008136. doi:10.1136/bmjopen-2015-008136. This study has characterised, for the first time, clinically relevant levels of cardiovascular risk in young adults born to hypertensive pregnancies. They are 2.5 times more likely to have a lifetime QRISK score above the 75th centile and are at a threefold increased risk of developing hypertension by the age of 20 years.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boivin A, Luo ZC, Audibert F, Masse B, Lefebvre F, Tessier R, et al. Pregnancy complications among women born preterm. CMAJ: Can Med Assoc J = J l'Assoc Med Can. 2012;184(16):1777–84. doi:10.1503/cmaj.120143. This study is the first identifying preterm birth as a significant risk factor for hypertensive complications of pregnancy, independently of low birth weight or SGA. Further, it is amongst the first reporting at a population level an increased incidence of chronic hypertension in preterms.

    Article  Google Scholar 

  7. Boivin A, Luo ZC, Audibert F, Masse B, Lefebvre F, Tessier R, et al. Risk for preterm and very preterm delivery in women who were born preterm. Obstet Gynecol. 2015;125(5):1177–84. doi:10.1097/AOG.0000000000000813.

    Article  PubMed  Google Scholar 

  8. Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2):197–206. doi:10.1161/CIRCULATIONAHA.112.126920. A long-term prospective follow-up study of preterm-born individuals, demonstrating that they have increased left ventricular mass in adult life. Furthermore, they exhibit a unique 3-dimensional left ventricular geometry and significant reductions in systolic and diastolic functional parameters.

    Article  PubMed  Google Scholar 

  9. Lewandowski AJ, Bradlow WM, Augustine D, Davis EF, Francis J, Singhal A, et al. Right ventricular systolic dysfunction in young adults born preterm. Circulation. 2013;128(7):713–20. doi:10.1161/CIRCULATIONAHA.113.002583. A second paper looking at the preterm heart, focusing on the right ventricle. The changes are greater in the right ventricle than previously observed in the left ventricle, with potentially clinically significant impairment in right ventricular systolic function.

    Article  PubMed  Google Scholar 

  10. Saugstad OD. Optimal oxygenation at birth and in the neonatal period. Neonatology. 2007;91(4):319–22. doi:10.1159/000101349.

    Article  CAS  PubMed  Google Scholar 

  11. Kelly BA, Lewandowski AJ, Worton SA, Davis EF, Lazdam M, Francis J, et al. Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism. Pediatrics. 2012;129(5):e1282–90. doi:10.1542/peds.2011-3175.

    Article  PubMed  Google Scholar 

  12. Lewandowski AJ, Lazdam M, Davis E, Kylintireas I, Diesch J, Francis J, et al. Short-term exposure to exogenous lipids in premature infants and long-term changes in aortic and cardiac function. Arterioscler Thromb Vasc Biol. 2011;31(9):2125–35. doi:10.1161/atvbaha.111.227298.

    Article  CAS  PubMed  Google Scholar 

  13. Lavoie JC, Belanger S, Spalinger M, Chessex P. Admixture of a multivitamin preparation to parenteral nutrition: the major contributor to in vitro generation of peroxides. Pediatrics. 1997;99(3), E6.

    Article  CAS  PubMed  Google Scholar 

  14. Kleiber N, Chessex P, Rouleau T, Nuyt AM, Perreault M, Lavoie JC. Neonatal exposure to oxidants induces later in life a metabolic response associated to a phenotype of energy deficiency in an animal model of total parenteral nutrition. Pediatr Res. 2010;68(3):188–92. doi:10.1203/00006450-201011001-00365.

    Article  CAS  PubMed  Google Scholar 

  15. Lewandowski AJ, Leeson P. Preeclampsia, prematurity and cardiovascular health in adult life. Early Hum Dev. 2014;90(11):725–9. doi:10.1016/j.earlhumdev.2014.08.012.

    Article  PubMed  Google Scholar 

  16. de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59(2):226–34. doi:10.1161/HYPERTENSIONAHA.111.181784. First meta-analysis demonstrating significantly elevated blood pressure in children and young adults born preterm.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Parkinson JR, Hyde MJ, Gale C, Santhakumaran S, Modi N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics. 2013;131(4):e1240–63. doi:10.1542/peds.2012-2177. Systematic review of 27 studies reporting on components of the metabolic syndrome in preterm-born adults and showing higher systolic, diastolic and 24-hour systolic BP following preterm birth.

    Article  PubMed  Google Scholar 

  18. Edwards MO, Watkins WJ, Kotecha SJ, Halcox JP, Dunstan FD, Henderson AJ, et al. Higher systolic blood pressure with normal vascular function measurements in preterm-born children. Acta Paediatr. 2014;103(9):904–12. doi:10.1111/apa.12699.

    Article  PubMed  Google Scholar 

  19. Sundstrom J, Arima H, Jackson R, Turnbull F, Rahimi K, Chalmers J, et al. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med. 2015;162(3):184–91. doi:10.7326/M14-0773.

    Article  PubMed  Google Scholar 

  20. Roberts G, Lee KJ, Cheong JL, Doyle LW. Victorian Infant Collaborative Study G. Higher ambulatory blood pressure at 18 years in adolescents born less than 28 weeks’ gestation in the 1990s compared with term controls. J Hypertens. 2014;32(3):620–6. doi:10.1097/HJH.0000000000000055.

    Article  CAS  PubMed  Google Scholar 

  21. Kajantie E, Osmond C, Eriksson JG. Coronary heart disease and stroke in adults born preterm—the Helsinki Birth Cohort Study. Paediatr Perinat Epidemiol. 2015;29(6):515–9. doi:10.1111/ppe.12219. Beyond elevated blood pressure and hypertension, this report shows increased morbidity and mortality related to cardiovascular diseases in a population born preterm.

    Article  PubMed  Google Scholar 

  22. Juonala M, Cheung MM, Sabin MA, Burgner D, Skilton MR, Kahonen M, et al. Effect of birth weight on life-course blood pressure levels among children born premature: the Cardiovascular Risk in Young Finns Study. J Hypertens. 2015;33(8):1542–8. doi:10.1097/HJH.0000000000000612.

    Article  CAS  PubMed  Google Scholar 

  23. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. doi:10.1016/S0140-6736(08)60074-4.

    Article  PubMed  Google Scholar 

  24. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33(3):130–7. doi:10.1053/j.semperi.2009.02.010.

    Article  PubMed  Google Scholar 

  25. Henderson JJ, McWilliam OA, Newnham JP, Pennell CE. Preterm birth aetiology 2004–2008. Maternal factors associated with three phenotypes: spontaneous preterm labour, preterm pre-labour rupture of membranes and medically indicated preterm birth. J Maternal-Fetal Neonatal Med. 2012;25(6):642–7. doi:10.3109/14767058.2011.597899.

    Article  Google Scholar 

  26. Davis Esther F, Newton L, Lewandowski Adam J, Lazdam M, Kelly Brenda A, Kyriakou T, et al. Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (London, England: 1979). 2012;123(Pt 2):53–72. doi:10.1042/CS20110627.

    Article  CAS  Google Scholar 

  27. Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61. doi:10.1542/peds.2011-3093.

    Article  PubMed  Google Scholar 

  28. Steegers EAP, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–44. doi:10.1016/S0140-6736(10)60279-6.

    Article  PubMed  Google Scholar 

  29. Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJP. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: The Helsinki Birth Cohort Study. Stroke. 2009;40(4):1176–80. doi:10.1161/strokeaha.108.538025.

    Article  PubMed  Google Scholar 

  30. Touwslager RNH, Houben AJHM, Gielen M, Zeegers MP, Stehouwer CDA, Zimmermann LJ, et al. Endothelial vasodilatation in newborns is related to body size and maternal hypertension. J Hypertens. 2012;30(1):124–31. doi:10.1097/HJH.0b013e32834d75c6.

    Article  CAS  PubMed  Google Scholar 

  31. Lazdam M, de la Horra A, Pitcher A, Mannie Z, Diesch J, Trevitt C, et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension. 2010;56(1):159–65. doi:10.1161/hypertensionaha.110.150235.

    Article  CAS  PubMed  Google Scholar 

  32. Crump C, Winkleby MA, Sundquist K, Sundquist J. Risk of hypertension among young adults who were born preterm: a Swedish national study of 636,000 births. Am J Epidemiol. 2011;173(7):797–803. doi:10.1093/aje/kwq440.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yasmin, McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(2):372. doi:10.1161/01.ATV.0000151373.33830.41.

    Article  CAS  PubMed  Google Scholar 

  34. Dao HH, Essalihi R, Bouvet C, Moreau P. Evolution and modulation of age-related medial elastocalcinosis: impact on large artery stiffness and isolated systolic hypertension. Cardiovasc Res. 2005;66(2):307–17. doi:10.1016/j.cardiores.2005.01.012.

    Article  CAS  PubMed  Google Scholar 

  35. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet. 1997;350(9082):953–5. doi:10.1016/S0140-6736(96)10508-0.

    Article  CAS  PubMed  Google Scholar 

  36. Bolton CE, Stocks J, Hennessy E, Cockcroft JR, Fawke J, Lum S, et al. The EPICure study: association between hemodynamics and lung function at 11 years after extremely preterm birth. J Pediatr. 2012;161(4):595–601. doi:10.1016/j.jpeds.2012.03.052. e2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rossi P, Tauzin L, Marchand E, Boussuges A, Gaudart J, Frances Y. Respective roles of preterm birth and fetal growth restriction in blood pressure and arterial stiffness in adolescence. J Adolesc Health: Off Publ Soc Adolesc Med. 2011;48(5):520–2. doi:10.1016/j.jadohealth.2010.08.004.

    Article  Google Scholar 

  38. McEniery CM, Bolton CE, Fawke J, Hennessy E, Stocks J, Wilkinson IB, et al. Cardiovascular consequences of extreme prematurity: the EPICure study. J Hypertens. 2011;29(7):1367–73. doi:10.1097/HJH.0b013e328347e333.

    Article  CAS  PubMed  Google Scholar 

  39. Tauzin L, Rossi P, Grosse C, Boussuges A, Frances Y, Tsimaratos M, et al. Increased systemic blood pressure and arterial stiffness in young adults born prematurely. J Develop Orig Health Dis. 2014;5(6):448–52. doi:10.1017/S2040174414000385.

    Article  CAS  Google Scholar 

  40. Bonamy AK, Bendito A, Martin H, Andolf E, Sedin G, Norman M. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr Res. 2005;58(5):845–9. doi:10.1203/01.PDR.0000181373.29290.80.

    Article  PubMed  Google Scholar 

  41. Boardman H, Birse K, Davis EF, Whitworth P, Aggarwal V, Lewandowski AJ, et al. Comprehensive multi-modality assessment of regional and global arterial structure and function in adults born preterm. Hypertens Res:Off J Jpn Soc Hypertens. 2016;39(1):39–45. doi:10.1038/hr.2015.102. Adults who are born preterm have significant differences in their aortic structure from adults born at term, but they have relatively small differences in central arterial stiffness that may be partially explained by blood pressure variations.

    Article  CAS  Google Scholar 

  42. Edstedt Bonamy AK, Bengtsson J, Nagy Z, De Keyzer H, Norman M. Preterm birth and maternal smoking in pregnancy are strong risk factors for aortic narrowing in adolescence. Acta Paediatr. 2008;97(8):1080–5. doi:10.1111/j.1651-2227.2008.00890.x.

    Article  PubMed  Google Scholar 

  43. Schubert U, Muller M, Edstedt Bonamy AK, Abdul-Khaliq H, Norman M. Aortic growth arrest after preterm birth: a lasting structural change of the vascular tree. J Develop Orig Health Dis. 2011;2(4):218–25. doi:10.1017/S2040174411000274.

    Article  CAS  Google Scholar 

  44. Bonamy AK, Martin H, Jorneskog G, Norman M. Lower skin capillary density, normal endothelial function and higher blood pressure in children born preterm. J Intern Med. 2007;262(6):635–42. doi:10.1111/j.1365-2796.2007.01868.x.

    Article  PubMed  Google Scholar 

  45. Antonios TF, Rattray FM, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension. Heart. 2003;89(2):175–8. doi:10.1136/heart.89.2.175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118(9):968–76. doi:10.1161/CIRCULATIONAHA.107.763730.

    Article  PubMed  Google Scholar 

  47. Ko SH, Cao W, Liu Z. Hypertension management and microvascular insulin resistance in diabetes. Curr Hypertens Rep. 2010;12(4):243–51. doi:10.1007/s11906-010-0114-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vicaut E. Hypertension and the microcirculation. Arch Mal Coeur Vaiss. 2003;96(9):893–903.

    CAS  PubMed  Google Scholar 

  49. Kovacic JC, Moreno P, Hachinski V, Nabel EG, Fuster V. Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation. 2011;123(15):1650–60.

    Article  PubMed  Google Scholar 

  50. De Bock K, Georgiadou M, Carmeliet P. Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 2013;18(5):634–47. doi:10.1016/j.cmet.2013.08.001.

    Article  PubMed  Google Scholar 

  51. Machalinska A, Modrzejewska M, Dziedziejko V, Kotowski M, Safranow K, Herbowska A, et al. Evaluation of VEGF and IGF-1 plasma levels in preterm infants—potential correlation with retinopathy of prematurity, clinical implications. Klin Ocz. 2009;111(10–12):302–6.

    CAS  Google Scholar 

  52. Safranow K, Kotowski M, Lewandowska J, Machalinska A, Dziedziejko V, Czajka R, et al. Circulating endothelial progenitor cells in premature infants: is there an association with premature birth complications? J Perinat Med. 2012;40(4):455–62. doi:10.1515/jpm-2011-0199.

    Article  PubMed  Google Scholar 

  53. Borghesi A, Massa M, Campanelli R, Bollani L, Tzialla C, Figar TA, et al. Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2009;180(6):540–6. doi:10.1164/rccm.200812-1949OC.

    Article  PubMed  Google Scholar 

  54. Baker CD, Balasubramaniam V, Mourani PM, Sontag MK, Black CP, Ryan SL, et al. Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. Eur Respir J. 2012;40(6):1516–22. doi:10.1183/09031936.00017312.

    Article  PubMed  Google Scholar 

  55. Hellgren G, Lofqvist C, Hard AL, Hansen-Pupp I, Gram M, Ley D, et al. Serum concentrations of vascular endothelial growth factor in relation to retinopathy of prematurity. Pediatr Res. 2016;79(1–1):70–5. doi:10.1038/pr.2015.181.

    Article  CAS  PubMed  Google Scholar 

  56. Procianoy RS, Hentges CR, Silveira RC. Vascular endothelial growth factor/placental growth factor heterodimer levels in preterm infants with bronchopulmonary dysplasia. Am J Perinatol. 2015. doi:10.1055/s-0035-1566294.

    Google Scholar 

  57. Yang WC, Chen CY, Chou HC, Hsieh WS, Tsao PN. Angiogenic factors in cord blood of preterm infants predicts subsequently developing bronchopulmonary dysplasia. Pediatr Neonatol. 2015;56(6):382–5. doi:10.1016/j.pedneo.2015.02.001.

    Article  PubMed  Google Scholar 

  58. Kim DH, Kim HS. Serial changes of serum endostatin and angiopoietin-1 levels in preterm infants with severe bronchopulmonary dysplasia and subsequent pulmonary artery hypertension. Neonatology. 2014;106(1):55–61. doi:10.1159/000358374.

    Article  CAS  PubMed  Google Scholar 

  59. Ligi I, Simoncini S, Tellier E, Vassallo PF, Sabatier F, Guillet B, et al. A switch toward angiostatic gene expression impairs the angiogenic properties of endothelial progenitor cells in low birth weight preterm infants. Blood. 2011;118(6):1699–709. doi:10.1182/blood-2010-12-325142. First study to demonstrate impaired in vitro angiogenic function and pro-angiostatic state using endothelial colony-forming cells isolated from low birth weight preterm infants cord blood.

    Article  CAS  PubMed  Google Scholar 

  60. Vassallo PF, Simoncini S, Ligi I, Chateau AL, Bachelier R, Robert S, et al. Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood. 2014;123(13):2116–26. doi:10.1182/blood-2013-02-484956.

    Article  CAS  PubMed  Google Scholar 

  61. Fujinaga H, Baker CD, Ryan SL, Markham NE, Seedorf GJ, Balasubramaniam V, et al. Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants. Am J Physiol Lung Cell Mol Physiol. 2009;297(6):L1160–9. doi:10.1152/ajplung.00234.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH, Balasubramaniam V. Endothelial colony-forming cells from preterm infants are increased and more susceptible to hyperoxia. Am J Respir Crit Care Med. 2009;180(5):454–61. doi:10.1164/rccm.200901-0115OC.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ligi I, Simoncini S, Tellier E, Grandvuillemin I, Marcelli M, Bikfalvi A, et al. Altered angiogenesis in low birth weight individuals: a role for anti-angiogenic circulating factors. J Matern-Fetal Neonatal Med: Off J Eur Assoc Perinatal Med, Fed Asia and Ocean Perinatal Soc, Int Soc Perinatal Obstet. 2014;27(3):233–8. doi:10.3109/14767058.2013.807237.

    Article  CAS  Google Scholar 

  64. Kamlin CO, O’Donnell CP, Davis PG, Morley CJ. Oxygen saturation in healthy infants immediately after birth. J Pediatr. 2006;148(5):585–9. doi:10.1016/j.jpeds.2005.12.050.

    Article  PubMed  Google Scholar 

  65. Solberg R, Perrone S, Saugstad OD, Buonocore G. Risks and benefits of oxygen in the delivery room. J Matern-Fetal Neonatal Med: Off J Eur Assoc Perinatal Med, Fed Asia and Ocean Perinatal Soc, Int Soc Perinatal Obstet. 2012;25 Suppl 1:41–4. doi:10.3109/14767058.2012.665236.

    Article  CAS  Google Scholar 

  66. Tataranno ML, Oei JL, Perrone S, Wright IM, Smyth JP, Lui K, et al. Resuscitating preterm infants with 100% oxygen is associated with higher oxidative stress than room air. Acta Paediatr. 2015;104(8):759–65. doi:10.1111/apa.13039.

    Article  CAS  PubMed  Google Scholar 

  67. Georgeson GD, Szony BJ, Streitman K, Varga IS, Kovacs A, Kovacs L, et al. Antioxidant enzyme activities are decreased in preterm infants and in neonates born via caesarean section. Eur J Obstet Gynecol Reprod Biol. 2002;103(2):136–9. doi:10.1016/S0301-2115(02)00050-7.

    Article  CAS  PubMed  Google Scholar 

  68. Kuster A, Tea I, Ferchaud-Roucher V, Le Borgne S, Plouzennec C, Winer N, et al. Cord blood glutathione depletion in preterm infants: correlation with maternal cysteine depletion. PLoS One. 2011;6(11):e27626. doi:10.1371/journal.pone.0027626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lai TT, Bearer CF. Iatrogenic environmental hazards in the neonatal intensive care unit. Clin Perinatol. 2008;35(1):163–81. doi:10.1016/j.clp.2007.11.003. ix.

    Article  PubMed  PubMed Central  Google Scholar 

  70. O’Donovan DJ, Fernandes CJ. Free radicals and diseases in premature infants. Antioxid Redox Signal. 2004;6(1):169–76. doi:10.1089/152308604771978471.

    Article  PubMed  Google Scholar 

  71. Dennery PA. Effects of oxidative stress on embryonic development. Birth Def Res Part C, Embryo Today: Rev. 2007;81(3):155–62. doi:10.1002/bdrc.20098.

    Article  CAS  Google Scholar 

  72. Yzydorczyk C, Comte B, Cambonie G, Lavoie JC, Germain N, Ting Shun Y, et al. Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood. Hypertension. 2008;52(5):889–95. doi:10.1161/HYPERTENSIONAHA.108.116251.

    Article  CAS  PubMed  Google Scholar 

  73. Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, Ionescu L, et al. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation. 2014;129(21):2144–57. doi:10.1161/CIRCULATIONAHA.114.009124.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li R, Yang X, Wang Y, Chu Z, Liu T, Zhu T, et al. Effect(s) of preterm birth on normal retinal vascular development and oxygen-induced retinopathy in the neonatal rat. Curr Eye Res. 2013;38(12):1266–73. doi:10.3109/02713683.2013.813556.

    Article  CAS  PubMed  Google Scholar 

  75. Sutherland MR, O’Reilly M, Kenna K, Ong K, Harding R, Sozo F, et al. Neonatal hyperoxia: effects on nephrogenesis and long-term glomerular structure. Am JPhysiol Renal Physiol. 2013;304(10):F1308–16. doi:10.1152/ajprenal.00172.2012.

    Article  CAS  Google Scholar 

  76. Mivelaz Y, Yzydorczyk C, Barbier A, Cloutier A, Fouron JC, de Blois D, et al. Neonatal oxygen exposure leads to increased aortic wall stiffness in adult rats: a Doppler ultrasound study. J Dev Orig Health Dis. 2011;2(3):184–9. doi:10.1017/S2040174411000171.

    Article  CAS  PubMed  Google Scholar 

  77. Huyard F, Yzydorczyk C, Castro MM, Cloutier A, Bertagnolli M, Sartelet H, et al. Remodeling of aorta extracellular matrix as a result of transient high oxygen exposure in newborn rats: implication for arterial rigidity and hypertension risk. PLoS One. 2014;9(4), e92287. doi:10.1371/journal.pone.0092287.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yzydorczyk C, Comte B, Huyard F, Cloutier A, Germain N, Bertagnolli M, et al. Developmental programming of eNOS uncoupling and enhanced vascular oxidative stress in adult rats after transient neonatal oxygen exposure. J Cardiovasc Pharmacol. 2013;61(1):8–16. doi:10.1097/FJC.0b013e318274d1c4.

    Article  CAS  PubMed  Google Scholar 

  79. Reibis RK, Huber M, Karoff M, Kamke W, Kreutz R, Wegscheider K, et al. Target organ damage and control of cardiovascular risk factors in hypertensive patients. Evidence from the multicenter ESTher registry. Herz. 2015;40 Suppl 2:209–16. doi:10.1007/s00059-014-4189-8.

    Article  PubMed  Google Scholar 

  80. Reboldi G, Angeli F, de Simone G, Staessen JA, Verdecchia P, Cardio-Sis I. Tight versus standard blood pressure control in patients with hypertension with and without cardiovascular disease. Hypertension. 2014;63(3):475–82. doi:10.1161/HYPERTENSIONAHA.113.02089.

    Article  CAS  PubMed  Google Scholar 

  81. Selmeryd J, Sundstedt M, Nilsson G, Henriksen E, Hedberg P. Impact of left ventricular geometry on long-term survival in elderly men and women. Clin Physiol Funct Imaging. 2014;34(6):442–8. doi:10.1111/cpf.12114.

    Article  PubMed  Google Scholar 

  82. Appleton RS, Graham Jr TP, Cotton RB, Moreau GA, Boucek Jr RJ. Altered early left ventricular diastolic cardiac function in the premature infant. Am J Cardiol. 1987;59(15):1391–4.

    Article  CAS  PubMed  Google Scholar 

  83. Kozak-Barany A, Jokinen E, Saraste M, Tuominen J, Valimaki I. Development of left ventricular systolic and diastolic function in preterm infants during the first month of life: a prospective follow-up study. J Pediatr. 2001;139(4):539–45. doi:10.1067/mpd.2001.118199.

    Article  CAS  PubMed  Google Scholar 

  84. Mikkola K, Leipala J, Boldt T, Fellman V. Fetal growth restriction in preterm infants and cardiovascular function at five years of age. J Pediatr. 2007;151(5):494–9. doi:10.1016/j.jpeds.2007.04.030. 9 e1-2.

    Article  PubMed  Google Scholar 

  85. Bertagnolli M, Huyard F, Cloutier A, Anstey Z, Huot-Marchand JE, Fallaha C, et al. Transient neonatal high oxygen exposure leads to early adult cardiac dysfunction, remodeling, and activation of the renin-angiotensin system. Hypertension. 2014;63(1):143–50. doi:10.1161/HYPERTENSIONAHA.113.01760. Mechanistic study demonstrating long term cardiac impact of neonatal conditions mimicking those of prematurity, including fibrosis, hypertrophy and heart failure after increased blood pressure.

    Article  CAS  PubMed  Google Scholar 

  86. Bensley JG, Stacy VK, De Matteo R, Harding R, Black MJ. Cardiac remodelling as a result of pre-term birth: implications for future cardiovascular disease. Eur Heart J. 2010;31(16):2058–66. doi:10.1093/eurheartj/ehq104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fauve Boudreau for the illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Monique Nuyt.

Ethics declarations

Conflict of Interest

Dr. Luu reports grants from Merck Sharpe & Dohme. Dr. Leeson reports grants from the British Heart Foundation and Wellcome Trust. Drs. Bertagnolli, Lewandowski, and Nuyt declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertagnolli, M., Luu, T.M., Lewandowski, A.J. et al. Preterm Birth and Hypertension: Is There a Link?. Curr Hypertens Rep 18, 28 (2016). https://doi.org/10.1007/s11906-016-0637-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0637-6

Keywords

Navigation