Skip to main content

Advertisement

Log in

Oxidative stress and antioxidant status in patients with chronic myeloid leukemia

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia is a myeloproliferative disorder with a unique rearrangement, the Philadelphia chromosome. Oxidative stress, a pervasive condition of an increased number of reactive oxygen species, is now recognized to be prominent feature of various diseases and their progression. Thus antioxidants, which control the oxidative stress state, represent a major line of defense regulating overall true state of health. The relationship between antioxidants status and levels of well-known markers of oxidative stress that are measured as lipid peroxides and oxidized proteins reflect better health indices and postures. The aim of this study was to evaluate the role of oxidative stress in pathophysiology of Chronic myeloid leukemia by measuring the circulating plasma lipid peroxide levels in terms of malonyldialdehyde, total lipid hydroperoxide and oxidized proteins as protein carbonyl whereas antioxidant status were estimated in terms of reduced glutathione and total thiol in plasma of Chronic myeloid leukemia patients. The present study included 47 Chronic myeloid leukemia patients and 20 age-and sex-matched healthy subjects. Out of 47 Chronic myeloid leukemia patients, 31 were in chronic phase (CML-CP) and 16 in accelerated phase (CML-AP). The median age of Chronic myeloid leukemia patients was 33 years and that of controls was 32 years. Oxidative stress and antioxidant status in plasma were evaluated by spectrophotometric procedures. There was a significant increase (p<0.05) in plasma malonyldialdehyde, total lipid hydroperoxide and protein carbonyl levels in Chronic myeloid leukemia patients as compared to healthy subjects. Our results also showed that plasma malonyldialdehyde and protein carbonyl levels were markedly elevated (p<0.05) in both chronic phase (CML-CP) and accelerated phase (CML-AP) as compared to healthy volunteers. Antioxidant status was found to be significantly decreased (p<0.05) in Chronic myeloid leukemia patients and its phases as compared to healthy participants. It could be concluded that oxidative stress may be associated with the pathophysiology of Chronic myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia [abstract]. Science 1960; 132:1497.

    Google Scholar 

  2. Kurzrock R, Kantarjian HM, Drucker BJ, Talpaz M. Philadelphia chromosome-positive leukemias: From basic mechanisms to molecular therapeutics. Ann Intern Med 2003; 138: 819–830.

    PubMed  CAS  Google Scholar 

  3. Frei B. Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 1994; 97:S5–S13.

    Article  Google Scholar 

  4. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd Edition. Oxford University Press, 1999.

  5. Irshad M, Chaudhuri PS. Oxidant-antioxidant system: Role and significance in human body. Ind J Exp Biol 2002; 40: 1233–1239.

    CAS  Google Scholar 

  6. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milazani A. Biomarkers of oxidative stress in human disease. Clin Chem 2006; 52:601–623.

    Article  PubMed  CAS  Google Scholar 

  7. Ray G, Batra S, Shukla NK, Deo S, Raina V, Ashok S, Husain SA. Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Research and Treatment 2000; 59:163–170.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Rad Biol Med 1997; 22: 269–285.

    Article  PubMed  CAS  Google Scholar 

  9. Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A. Oxidative stress and reactive oxygen species. Contrib Nephrol 2005; 149: 240–260.

    Article  PubMed  CAS  Google Scholar 

  10. Singh V, Ghalaut PS, Kharb S, Singh GP: Plasma concentrations of lipid peroxidation products in children with acute leukemia. Ind J Med Sci 2001; 55: 215–217.

    CAS  Google Scholar 

  11. Sie H. oxidative stress: from basic research to clinical application. Am J Med 1991; 9:31–38.

    Google Scholar 

  12. Manoharan S, Kolanjiappan K, Suresh K, Panjamutrhy K. Lipid peroxidation and antioxidant status in patients with oral squamous cell carcinoma. Ind J Med Res 2005; 122: 529–534.

    CAS  Google Scholar 

  13. Czeczot H, Scibior D, Skrzycki M, Podsiad M. Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma. Acta Biochemia Polonica 2006; 53: 237–241.

    CAS  Google Scholar 

  14. Navarro J, Obrador E, Carretero J, Petschen I, Avino J, Perez P, Estrela JM. Change in glutathione status and the antioxidant system in blood and in cancer cells associate with tumor growth in vivo. Free Radic Biol Med 1999; 26: 410–418.

    Article  PubMed  CAS  Google Scholar 

  15. Uzun H, Konukoglu D, Gelisgen R, Zengin K, Taskin M. plasma protein carbonyl and thiol stress before and after laproscopic gastric banding in morbidly obese patients. Obesity Surgery 2007; 17:1367–1373.

    Article  PubMed  Google Scholar 

  16. Draper HH, Hadley M: Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990; 186: 421–431.

    Article  PubMed  CAS  Google Scholar 

  17. Wolf SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxide. Methods Enzymol 1994; 233:182–189.

    Article  Google Scholar 

  18. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. Determination of carbonyl content of oxidatively modified proteins. Methods Enzymol 1990; 186: 464–478.

    Article  PubMed  CAS  Google Scholar 

  19. Lowry, OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagents. J Biol Chem 1951; 193: 265–275.

    PubMed  CAS  Google Scholar 

  20. Beutler E, Duran O, Kelly MB. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61:882–888.

    PubMed  CAS  Google Scholar 

  21. Hu ML. Measurement of protein thiol group and glutathione in plasma. Methods Enzymol 1994; 233:381–385.

    Google Scholar 

  22. Cerutti PA. Pro-oxidant status and tumor promotion. Science 1985; 227:375–381.

    Article  PubMed  CAS  Google Scholar 

  23. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milazani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 2006; 10 (2): 389–406.

    Article  PubMed  CAS  Google Scholar 

  24. Cerutti PA. Oxy-radicals and cancer. Lancet 1994; 344: 862–863.

    Article  PubMed  CAS  Google Scholar 

  25. Dormandy TI. An approach to free radicals. Lancet 1983; 1:1010–1014.

    Article  Google Scholar 

  26. Ghalaut VS, Ghalaut PS, Singh S. Lipid peroxidation in leukemia. J Asso Phys Ind 1999; 47:403–405.

    CAS  Google Scholar 

  27. Abd-El-Rahman MAH, Soliman SF, Tolba KA El-Kabbany ZA, Makhlouf MS. Plasma concentrations of lipid peroxidation products in children with acute lymphoblastic leukemia. Clin Chem 1992; 38:594–595.

    Google Scholar 

  28. Manju V, Kalaivani Sailaja J, Nalini N. Circulating lipid peroxidation and antioxidant status in cervical cancer patients: a case-control study. Clin Biochem 2002; 35: 621–625.

    Article  PubMed  CAS  Google Scholar 

  29. Geetha A, Karthiga S, Surendran G, Jayalakshmi G. Biochemical studies on the level of lipid hydroperoxide and antioxidants in different types of obstructive jaundice. J Lab Med 2001; 2:20–27.

    Google Scholar 

  30. Pignatelli B, Li CQ, Boffetta P, Chen Q, Ahrens W, Nyberg F, et al. Nitrated and oxidized protein in smokers and lung cancer patients. Cancer Research 2001; 61(2): 778–784.

    PubMed  CAS  Google Scholar 

  31. Yilmaz IA, Akçay T, Cakatay U, Telci A, Ataus S, Yalçin V. R Relation between bladder and protein oxidation. Int Urol Nephrol 20 2003; 35(3):345–350

    Article  Google Scholar 

  32. Morabito F, Cristani M, Saija A, Stelitano C, Callea V, Tomaino A, et al. Lipid peroxidation and protein oxidation in patients affected by Hodgkin’s lymphoma. Mediators Inflam 2004; 13(5–6): 381–383.

    CAS  Google Scholar 

  33. Popadiuk S, Korzon M, Renke J, Wozniak M. Carbonyl group content on the basis of protein peroxidation analysis with total antioxidant status in blood of children with cancers. Wiad Lek 1998; 51: 107–112. (Article in Polish)

    PubMed  Google Scholar 

  34. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione Metabolism and Its Implications for Health. J Nutr 2004; 134: 489–492.

    PubMed  CAS  Google Scholar 

  35. Oberley LW, Oberley TD. Role of antioxidant enzymes in cell immortalization and transformation. Mol Cell Biochem 1988; 84:147–153.

    Article  PubMed  CAS  Google Scholar 

  36. Sun Y. Free radicals, antioxidant enzymes and carcinogenesis. Free Radic Biol Med 1990; 8:583–599.

    Article  PubMed  CAS  Google Scholar 

  37. Bakan N, Taysi S, Yilmaz O, Bakan E, Kuskay S, Uzun N. Glutathione peroxidase, glutathione reductase, Cu-Zn superoxide dismautase activities, glutathione, nitric oxide, and malondialdehyde concentrations in serum of patients with chronic myeloid leukemia. Clin Chim Acta 2003; 338:143–149.

    Article  PubMed  CAS  Google Scholar 

  38. Kharb S, Singh V, Ghalaut PS, Sharma A, Singh GP. Glutathione levels in health and sickness. Ind J Med Sci 2000; 54:52–54.

    CAS  Google Scholar 

  39. Giacomo CD, Acquaviva R, Lanteri R, Licata F, Licata A, Vanella A. Nonproteic antioxidant status in plasma of subjects with colon cancer. Exp Biol Med 2003; 228:525–528.

    Google Scholar 

  40. Andersson A, Lindgren A, Arnadottir M, Prytz H, Hultberg B. Thiols as a measure of plasma redox status in healthy subjects and in patients with renal or liver failure. Clin Chem 1999; 45:1084–1087.

    PubMed  CAS  Google Scholar 

  41. Weijl NI, Leton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev 1997; 23:209–240.

    Article  PubMed  CAS  Google Scholar 

  42. Sangeetha P, Das UN, Koratkar R, Suryaprabha P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic Biol Med 1990; 8:15–19.

    Article  PubMed  CAS  Google Scholar 

  43. Lauterburg BH, Nguyen T, Hartmann B, Junker E, Kupfer A, Cerny T. Depletion of total cysteine, glutathione, and homocysteine in plasma by ifosfamide/mesna therapy. Cancer Chemother Pharmacol 1994; 35:132–136.

    Article  PubMed  CAS  Google Scholar 

  44. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2006; 25:695–705.

    Article  PubMed  CAS  Google Scholar 

  45. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, et al. The BCR/ABL tryrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 2000; 275:24273–24278.

    Article  PubMed  CAS  Google Scholar 

  46. Koptyra M, Falinski R, Nowicki M, Stoklosa T, Majsterek I, Nieborowska-Skorska M, Blasiak J, Skorski T. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108(1): 319–327.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, R., Tripathi, A.K., Tripathi, P. et al. Oxidative stress and antioxidant status in patients with chronic myeloid leukemia. Indian J Clin Biochem 23, 328–333 (2008). https://doi.org/10.1007/s12291-008-0072-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-008-0072-9

Key Words

Navigation