Skip to main content
Log in

Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Lovastatin is a competitive inhibitor of 3-hydroxy 3-methylglutaryl coenzyme A reductase, the key regulatory enzyme of cholesterol biosynthesis. This enzyme catalyzes the formation of mevalonate, which is also the precursor of isoprenoid moieties, such as farnesol and geraniol, that are incorporated into several molecules essential for tumor cell signaling. Here, we describe that pretreatment with a non-cytotoxic concentration of lovastatin (10 μM) dramatically inhibited the metastatic ability of F3II mammary carcinoma cells in syngeneic BALB/c mice. Similarly, daily i.p. treatment of animals with a well-tolerated dose of lovastatin (10 mg/kg/day) significantly reduced the number of experimental lung metastases. In vitro, incubation of F3II monolayers in the presence of lovastatin caused a rounded-cell morphology. Immunofluorescence analysis revealed a lack of cortical actin organization, micrutubule disruption and inhibition of integrin-mediated focal contacts in lovastatin-treated cells. Exposure of F3II cells to lovastatin significantly inhibited tumor cell adhesion and migration, and coincubation with the cholesterol precursor mevalonate prevented these effects. Lovastatin reduced membrane localization of Rho protein, a signaling molecule involved in the regulation of actin-based cell motility that needs geranylation for membrane association and activation. In addition, lovastatin induced a dose-dependent inhibition in the secretion of urokinase, a key proteolytic enzyme during tumor invasion and metastasis, and a significant increase of tissue-type plasminogen activator, a marker of good prognosis in mammary cancer. These data suggest that antimetastatic properties of lovastatin are strongly associated with alterations in cytoskeleton organization and the consequent modulation of adhesion, motility and proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kritz H, Zielinsky C, Sinzinger H. Low cholesterol and cancer. J Clin Oncol 1996; 14: 3043-8.

    PubMed  CAS  Google Scholar 

  2. Corsini A, Maggi FM, Catapano AL. Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacol Res 1995; 31(1): 9–27.

    Article  PubMed  CAS  Google Scholar 

  3. Maltese WA. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J 1990; 4(15): 3319–28.

    PubMed  CAS  Google Scholar 

  4. Rao S, Porter DC, Chen X et al. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Natl Acad Sci USA 1999; 96: 7797–802.

    Article  PubMed  CAS  Google Scholar 

  5. Fidler IJ. Cancer Metastasis. Br Med Bull 1991; 47: 157–77.

    PubMed  CAS  Google Scholar 

  6. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 73(1): 61–95.

    Google Scholar 

  7. Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 1999; 147: 89–104.

    Article  PubMed  CAS  Google Scholar 

  8. Needham GK, Nicholson S, Angus B et al. Relationship of membrane-bound tissue type and urokinase type plasminogen activators in human breast cancers to estrogen and epidermal growth factor receptors. Cancer Res 1988; 48(22): 6603–7.

    PubMed  CAS  Google Scholar 

  9. Duffy MJ, O'Grady P, Devaney D et al. Tissue-type plasminogen activator, a new prognostic marker in breast cancer. Cancer Res 1988; 48: 1348–9.

    PubMed  CAS  Google Scholar 

  10. Yamashita J, Ogawa M, Yamashita S et al. Differential significance of tissue-type and urokinase-type plasminogen activator in human breast cancer. Br J Cancer 1993; 68: 524–9.

    PubMed  CAS  Google Scholar 

  11. Littman ML, Taguchi T, Mosbach EH. Effect of cholesterol-free, fatfree diet and hypocholesteremic agents on growth of transplantable animal tumors. Cancer Chemother Rep 1966; 50: 25–45.

    PubMed  CAS  Google Scholar 

  12. Maltese WA, Defendini R, Green RA et al. Supression of murine neuroblastoma growth in vivo by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-conezyme A reductase. J Clin Invest 1995; 76: 1748–54.

    Article  Google Scholar 

  13. Jani JP, Specht S, Stemmler N et al. Metastasis of B16F10 mouse melanoma inhibited by lovastatin, an inhibitor of cholesterol biosynthesis. Invasion Metastasis 1993; 13(6): 314–24.

    PubMed  CAS  Google Scholar 

  14. Sumi S, Beauchamp RD, Townsend CM et al. Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation. Pancreas 1994; 9(5): 657–61.

    Article  PubMed  CAS  Google Scholar 

  15. Hawk MA, Cesen KT, Siglin JC et al. Inhibition of lung growth in vitro and mouse lung tumor formation by lovastatin. Cancer Lett 1996; 109: 217–22.

    Article  PubMed  CAS  Google Scholar 

  16. Matar P, Rozados VR, Roggero EA et al. Lovastatin inhibits tumor growth and metastasis development of a rat fibrosarcoma. Cancer Biother Radiopharm 1998; 13: 387–93.

    Article  PubMed  CAS  Google Scholar 

  17. Alonso DF, Farina HG, Skilton G et al. Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of mevalonate pathway of cholesterol synthesis. Breast Cancer Res Treat 1998; 50: 83–93.

    Article  PubMed  CAS  Google Scholar 

  18. Alonso DF, Farias EF, Urtreger A et al. Characterization of F3II, a sarcomatoid mammary carcinoma cell line originated from a clonal subpopulation of a mause adenocarcinoma. J Surg Oncol 1996; 62: 288–97.

    Article  PubMed  CAS  Google Scholar 

  19. Thibault A, Samid D, Tompkins AC et al. Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 1996; 2: 483–91.

    PubMed  CAS  Google Scholar 

  20. De Lorenzo MS, Lorenzano Menna P, Alonso DF et al. In vitro activity of a Solanum tuberosum extract against mammary carcinoma cells. Planta Med 2001; 67: 164–6.

    Article  PubMed  CAS  Google Scholar 

  21. Goodman SL, Vollmers HP, Birchmeir W. Control of the cell locomotion: Perturbation with an antibody directed against specific glycoproteins. Cell 1985; 41: 1029–38.

    Article  PubMed  CAS  Google Scholar 

  22. Alonso DF, Farias EF, Ladeda V et al. Effects of synthetic urokinase inhibitors on local invasion and metastasis in a murine mammary tumor model. Breast Cancer Res Treat 1996; 40: 209–23.

    Article  PubMed  CAS  Google Scholar 

  23. Alonso DF, Farias EF, Famulari AL et al. Excessive urokinase-type plaminogen activator activity in the euglobulin fraction of patients with Alzheimer-type dementia. J Neurol Sci 1996; 139: 83–8.

    Article  PubMed  CAS  Google Scholar 

  24. Saksela O. Radial caseinolysis in agarose: A simple method for detection of plasminogen activator in the presence of inhibitory substances and serum. Anal Biochem 1981; 111: 276–82.

    Article  PubMed  CAS  Google Scholar 

  25. Vassalli JD, Belin D. Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett 1987; 214: 187–91.

    Article  PubMed  CAS  Google Scholar 

  26. Alonso DF, Skilton G, Farina HG et al. Modulation of growth and urokinase secretion by vasopressin and closely related nonapeptides in metastatic mouse mammary tumor cells. Int J Oncol 1997; 10: 375–9.

    CAS  Google Scholar 

  27. Bifuleo M, Laezza C, Aoj SM et al. Mevalonate controls cytoskeleton organization and cell morphology in thyroid epithelial cells. J Cell Physiol 1993; 155: 340–8.

    Article  Google Scholar 

  28. Fenton RG, Kung HF, Longo DL et al. Regulation of intracellular actin polymerization by prenylated cellular proteins. J Cell Biol 1992; 117: 347–56.

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh PM, Ghosh-Choudhury N, Moyer ML et al. Role of RhoA activation in the growth and morphology of a murine prostate tumor cell line. Oncogene 1999; 18: 4120–30.

    Article  PubMed  CAS  Google Scholar 

  30. Koch G, Benz C, Schmidt G et al. Role of Rho protein in lovastatin-induced breakdown of actin cytoskeleton. J Pharmacol Exp Ther 1997; 283: 901–9.

    PubMed  CAS  Google Scholar 

  31. Chardin P, Bocquet P, Madaule P et al. The mammalian G protein rhoC is ADP-ribosylated by Clostridium Botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 1989; 8: 1087–92.

    PubMed  CAS  Google Scholar 

  32. Takaishi K, Kikkuchi A, Kuroda S et al. Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Mol Cell Biol 1993; 13: 72–9.

    PubMed  CAS  Google Scholar 

  33. Kishi K, Sasaki T, Kuroda S et al. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol 1993; 120: 1187–95.

    Article  PubMed  CAS  Google Scholar 

  34. Essig M, Vrtovsnik F, Nguyen G et al. Lovastatin modulates in vivo and in vitro the plasminogen activator/plasmin system of rat proximal tubular cells: Role of geranylgeranylation and Rho proteins. J Am Soc Nephrol 1998; 9(8): 1377–88.

    PubMed  CAS  Google Scholar 

  35. Essig M, Nguyen G, Prie D et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells. Role of geranylgeranylation and Rho proteins. Cire Res 1998; 83: 683–90.

    CAS  Google Scholar 

  36. Albelda SM. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 1993; 68: 4–18.

    PubMed  CAS  Google Scholar 

  37. Alonso DF, Farina HG, Arregui C et al. Modulation of urokinase-type plasminogen activator and metalloproteinase activities in cultured mouse mammary-carcinoma cells: Enhancement by paclitaxel and inhibition by nocodazole. Int J Cancer 1999; 83: 242–6.

    Article  PubMed  CAS  Google Scholar 

  38. Rabbani SA, Xing RH. Role of urokinase (uPA) and its receptor (uPAR) in invasion and metastasis of hormone-dependent malignancies. Int J Oncol 1998; 12: 911–20.

    PubMed  CAS  Google Scholar 

  39. Botteri FM, Ballmer-Hofer K, Rajput B et al. Disruption of cytoskeletal structures results in the induction of the urokinase-type plasminogen activator gene expression. J Biochem 1990; 265: 13327–34.

    CAS  Google Scholar 

  40. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the ras/extracellular signal-regulated kinase (ERK) signaling pathway. J Biol Chem 1997; 272: 1904–9.

    Article  PubMed  CAS  Google Scholar 

  41. Snyder RW, Lenburg ME, Scebaum AT et al. Disruption of the cytoskeleton-extracellular matrix linkage promotes the accumulation of plasminogen activators in F9 derived parietal endoderm. Differentiation 1992; 50: 153–62.

    PubMed  CAS  Google Scholar 

  42. Kusama T, Mukai M, Iwasaki T et al. 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology 2002; 122: 308–17.

    Article  PubMed  CAS  Google Scholar 

  43. Matar P, Rozados VR, Binda MM et al. Inhibitory effect of lovastatin on spontaneous metastases derived from a rat lymphoma. Clin Exp Metastasis 1999; 17: 19–25.

    Article  PubMed  CAS  Google Scholar 

  44. MacDonald JS, Gerson RJ, Kornbrust DJ et al. Preclinical evaluation of lovastatin. Am J Cardiol 1988; 62: 16–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farina, H.G., Bublik, D.R., Alonso, D.F. et al. Lovastatin alters cytoskeleton organization and inhibits experimental metastasis of mammary carcinoma cells. Clin Exp Metastasis 19, 551–560 (2002). https://doi.org/10.1023/A:1020355621043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020355621043

Navigation