Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway

Abstract

Using a combined pharmacological and gene-deletion approach, we have delineated a novel mechanism of neurokinin-1 (NK-1) receptor-dependent hyperalgesia induced by proteinase-activated receptor-2 (PAR2), a G-protein–coupled receptor expressed on nociceptive primary afferent neurons. Injections into the paw of sub-inflammatory doses of PAR2 agonists in rats and mice induced a prolonged thermal and mechanical hyperalgesia and elevated spinal Fos protein expression. This hyperalgesia was markedly diminished or absent in mice lacking the NK-1 receptor, preprotachykinin-A or PAR2 genes, or in rats treated with a centrally acting cyclooxygenase inhibitor or treated by spinal cord injection of NK-1 antagonists. Here we identify a previously unrecognized nociceptive pathway with important therapeutic implications, and our results point to a direct role for proteinases and their receptors in pain transmission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAR2-induced thermal hyperalgesia, edema and inflammatory cell influx in rats, and the role of SP and prostaglandins.
Figure 2: Role of PAR2 in mechanical hyperalgesia.
Figure 3: Thermal hyperalgesia induced by the intraplantar injection.
Figure 4: PAR2 agonist-induced Fos expression in the dorsal horn.
Figure 5: a–d, Thermal hyperalgesia induced by the intraplantar injection of 1 μg/paw SL-NH2 (▪) or 1 μg/paw LR-NH2 (□) in NK-1 wild type (a), PPT-A wild type (b), NK-1–deficient (c) and PPT-A–deficient (d) mice.
Figure 6: PAR2 mediates inflammator hyperalgesia.

Similar content being viewed by others

References

  1. Dery, O., Corvera, C.U., Steinhoff, M. & Bunnett, N.W. Proteinase-activated receptors: Novel mechanisms of signaling by serine proteases. Am. J. Physiol. 274, C1429–C1452 (1998).

    Article  CAS  Google Scholar 

  2. Hollenberg, M.D. Protease-activated receptors: PAR4 and counting: how long is the course? Trends Pharmacol. Sci. 20, 271–273 (1999).

    Article  CAS  Google Scholar 

  3. Saifeddine, M., al-Ani, B., Cheng, C.H., Wang, L. & Hollenberg, M.D. Rat proteinase-activated receptor-2 (PAR2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br. J. Pharmacol. 118, 521–530 (1996).

    Article  CAS  Google Scholar 

  4. Vergnolle, N., Hollenberg, M.D., Sharkey, K.A. & Wallace, J.L. Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br. J. Pharmacol. 127, 1083–1090 (1999).

    Article  CAS  Google Scholar 

  5. Vergnolle, N., Wallace, J.L., Bunnett, N.W. & Hollenberg, M.D. Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol. Sci. 22, 146–152 (2001).

    Article  CAS  Google Scholar 

  6. Steinhoff, M. et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Med. 6, 151–158 (2000).

    Article  CAS  Google Scholar 

  7. Vergnolle, N., Proteinase-activated receptor 2 (PAR2)-activating peptides: identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc. Natl. Acad. Sci. USA 95, 7766–7771 (1998).

    Article  CAS  Google Scholar 

  8. Ferreira, S.H. Prostaglandins, aspirin-like drugs and analgesia. Nat. New Biol. 240, 200–203 (1972).

    Article  CAS  Google Scholar 

  9. Molino, M. et al. Interactions of mast cell tryptase with thrombin receptors and PAR2. J. Biol Chem. 272, 4043–4049 (1997).

    Article  CAS  Google Scholar 

  10. Ohkubo, T., Shibata, M., Takahashi, H., Inoki, R., Roles of substance P and somatostatin on transmission of nociceptive information induced by formalin in spinal cord. J. Pharmacol. Exp. Ther. 252, 1261–1268 (1990).

    CAS  PubMed  Google Scholar 

  11. Damiano, B.P. et al. & Andrade-Gordon P. Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J. Pharmacol. Exp. Ther. 288, 671–678 (1999).

    CAS  PubMed  Google Scholar 

  12. Hunt, S.P., Pini, A. & Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634 (1987).

    Article  CAS  Google Scholar 

  13. Nakamura-Craig, M. & Gill, B.K. Effect of neurokinin A, substance P and calcitonin gene related peptide in peripheral hyperalgesia in the rat paw. Neurosci. Lett. 124, 49–51 (1991).

    Article  CAS  Google Scholar 

  14. Amann, R., Schuligoi, R., Holzer, P. & Donnerer, J. The non-peptide NK1 receptor antagonist SR140333 produces long-lasting inhibition of neurogenic inflammation, but does not influence acute chemo- or thermonociception in rats. Naunyn Schmiedebergs Arch. Pharmacol. 352, 201–205 (1995).

    Article  CAS  Google Scholar 

  15. Dickinson, T. & Fleetwood-Walker, S.M. Neuropeptides and nociception: recent advances and therapeutic implications. Trends Pharmacol. Sci. 19, 346–348 (1998).

    Article  CAS  Google Scholar 

  16. De Felipe, C. et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392, 394–397 (1998).

    Article  CAS  Google Scholar 

  17. Cao, T., Gerard, N.P. & Brain, S.D. Use of NK(1) knockout mice to analyze substance P-induced edema formation. Am. J. Physiol. 277, R476–481 (1999).

    Article  CAS  Google Scholar 

  18. Takasaki, I., Andoh, T., Nojima, H., Shiraki, K. & Kuraishi, Y. Gabapentin antinociception in mice with acute herpetic pain induced by Herpes Simplex virus infection. J. Pharmacol. Exp. Ther. 296, 270–275 (2001).

    CAS  PubMed  Google Scholar 

  19. He, S. & Walls, A.F. Human mast cell tryptase: a stimulus of microvascular leakage and mast cell activation. Eur. J. Pharmacol. 328, 89–97 (1997).

    Article  CAS  Google Scholar 

  20. Bohm, S.K. et al. Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J. Biol. Chem. 271, 22003–22016 (1996).

    Article  CAS  Google Scholar 

  21. Koshikawa, N. et al. Expression of trypsin in vascular endothelial cells. FEBS Lett. 409, 442–448 (1997).

    Article  CAS  Google Scholar 

  22. Cocks, T.M. et al. A protective role for protease-activated receptors in the airways. Nature 398, 156–160 (1999).

    Article  CAS  Google Scholar 

  23. Metcalfe, D.D., Baram, D. & Mekori, Y.A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    Article  CAS  Google Scholar 

  24. Miller, H.R. Mucosal mast cells and the allergic response against nematode parasites. Vet. Immunol. Immunopathol. 54, 331–336 (1996).

    Article  CAS  Google Scholar 

  25. Stead, R.H., et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc. Natl. Acad. Sci. USA 84, 2975–2979 (1987).

    Article  CAS  Google Scholar 

  26. Shanahan, F., Denburg, J.A., Fox, J., Bienenstock, J. & Befus, D. Mast cell heterogeneity: effects of neuroenteric peptides on histamine release. J. Immunol. 135, 1331–1337 (1985).

    CAS  PubMed  Google Scholar 

  27. Tam, E.K. & Caughey, G.H. Degradation of airway neuropeptides by human lung tryptase. Am. J. Respir. Cell Mol. Biol. 3, 27–32 (1990).

    Article  CAS  Google Scholar 

  28. Oku, R. et al. Calcitonin gene-related peptide promotes mechanical nociception by potentiating the release of substance P from the spinal dorsal horn in rats. Brain Res. 403, 350–354 (1987).

    Article  CAS  Google Scholar 

  29. Le Greves, P., Nyberg, F., Terenius, L. & Hökfelt, T. Calcitoninin gene-related peptide is a potent inhibitor of substance P degradation. Eur. J. Pharmacol. 115, 309–311 (1985).

    Article  CAS  Google Scholar 

  30. Xu, G-Y, Huang, L-Y.M. & Zhao, Z-Q. Activation of silent mechanoreceptive cat C and Aδ sensory neurons and their substance P expression following peripheral inflammation. J. Physiol. 528, 339–348 (2000).

    Article  CAS  Google Scholar 

  31. Hill, R. NK1 (substance P) receptor antagonists – why are they not analgesic in humans? Trends Pharmacol. Sci. 21, 244–246 (2000).

    Article  CAS  Google Scholar 

  32. McCarson, K.E. & Goldstein, B.D. Release of substance P into the superficial dorsal horn following nociceptive activation of the hindpaw of the rat. Brain Res. 568, 109–115 (1991).

    Article  CAS  Google Scholar 

  33. Hua, X.Y. et al. Spinal neurokinin NK1 receptor down-regulation and antinociception: effects of spinal NK1 receptor antisense oligonucleotides and NK1 receptor occupancy. J. Neurochem. 70, 688–698 (1998).

    Article  CAS  Google Scholar 

  34. Liu, H. et al. Resistance to excitotoxin-induced seizures and neuronal death in mice lacking the preprotachykinin A gene. Proc. Natl. Acad. Sci. USA 96, 12096–12101 (1999).

    Article  CAS  Google Scholar 

  35. Compton, S.J., Cairns, J.A., Holgate, S.T. & Walls, A.F. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 β and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J. Immunol. 161, 1936–1946 (1998).

    Google Scholar 

  36. Couture, R., Toma, N. & Barbot, L. SR142801 behaves as a tachykinin NK-3 receptor agonist on a spinal nociceptive reflex in the rat. Life Sci. 66, 51–65 (2000).

    Article  CAS  Google Scholar 

  37. Coudore-Civiale, M.A., Courteix, C., Eschalier, A. & Fialip, J. Effect of tachykinin receptor antagonists in experimental neuropathic pain. Eur. J. Pharmacol. 361, 175–84 (1998).

    Article  CAS  Google Scholar 

  38. Ferreira, S.H., Lorenzetti, B.B. & Correa, F.M. Central and peripheral antialgesic action of aspirin-like drugs. Eur. J. Pharmacol. 53, 39–48 (1978).

    Article  CAS  Google Scholar 

  39. Wallace, J.L. et al. Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: implications for gastrointestinal toxicity. Gastroenterology 115, 101–109 (1998).

    Article  CAS  Google Scholar 

  40. Kawabata, A., Saifeddine, M., Al-Ani, B., Leblond, L. & Hollenberg, M.D. Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: Activation of PAR2 by PAR1-targeted ligands. J. Pharmacol. Exp. Ther. 288, 358–370 (1999).

    CAS  PubMed  Google Scholar 

  41. Bradley, P.P., Priebat, D.A., Christensen, R.D. & Rothstein, G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol. 78, 206–209 (1982).

    Article  CAS  Google Scholar 

  42. Ferraz, J.G., McKnight, W., Sharkey, K.A. & Wallace, J.L. Impaired vasodilatory responses in the gastric microcirculation of anesthetized rats with secondary biliary cirrhosis. Gastroenterology 108, 1183–1191 (1995).

    Article  CAS  Google Scholar 

  43. Miampamba, M. & Sharkey, K.A. c-Fos expression in the myenteric plexus, spinal cord and brainstem following injection of formalin in the rat colonic wall. J. Auton. Nerv. Syst. 77, 140–151 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.W. Zochodne for assistance and advice and K. Chapman, L. Oland, M. Saifeddine and C. MacNaughton for technical assistance. This work was supported by grants from the Canadian Institutes of Health Research (to N.V., M.D.H., K.A.S. and J.L.W.), NicOx S.A. (to N.V.) the Johnson & Johnson Focused Giving Program (to N.W.B., M.D.H. and J.L.W.) and from the National Institutes of Health (DK 39957, DK 43207 and DK 57840 to N.W.B.; DK52388 to E.F.G.; HL41587 to N.G.; NS14627 to A.I.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.L. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergnolle, N., Bunnett, N., Sharkey, K. et al. Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat Med 7, 821–826 (2001). https://doi.org/10.1038/89945

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing