Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic silencing of RNA polymerase I transcription

Key Points

  • Ribosomal RNA genes can be silenced on a large scale, by the inactivation of entire nucleolus organizer regions (NORs) in genetic hybrids, or on a smaller scale, by silencing individual rRNA genes within an NOR.

  • Techniques that probe the accessibility of rRNA genes in a chromatin environment, including those using the sensitivity to deoxyribonucleases or the DNA crosslinking agent psoralen, have shown that changes in chromatin accessibility correlate with changes in rRNA gene transcription in yeast, plants and mammals.

  • Silenced rRNA genes are derepressed if DNA methylation or histone deacetylation is perturbed, implicating chromatin modifications in rRNA gene silencing.

  • New insight into rRNA gene silencing mechanisms has come from the characterization of NoRC, a SNF2h-containing chromatin remodelling complex that is recruited to mammalian rRNA gene promoters by the DNA-binding factor TTF-I. NoRC interaction with the rRNA gene promoter brings about transcriptional silencing coincident with de novo cytosine methylation, histone deacetylation and histone H3 lysine 9 methylation.

  • Future challenges include the need to understand how rRNA genes are chosen for activation or repression, how NoRC is targeted to establish or maintain silencing, how overall chromatin organization is affected by localized rRNA gene silencing and how epigenetic marks are inherited.

Abstract

The genes that encode ribosomal RNA exist in two distinct types of chromatin — an 'open' conformation that is permissive to transcription and a 'closed' conformation that is transcriptionally refractive. Recent studies have provided insights into the molecular mechanisms that silence either entire nucleolus organizer regions (NORs) in genetic hybrids or individual rRNA genes within a NOR. An emerging theme from these studies is that epigenetic mechanisms operating at the level of DNA methylation and histone modifications alter the chromatin structure and control the ratio of active and inactive rRNA genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleolar dominance.
Figure 2: DNA methylation impairs binding of upstream binding factor (UBF) to nucleosomal rRNA genes.
Figure 3: Active and silent ribosomal genes are demarcated by their associated proteins.
Figure 4: SNF2-containing chromatin-remodelling complexes.
Figure 5: Model of NoRC-mediated rRNA gene silencing.

Similar content being viewed by others

References

  1. Reeder, R. H. in Ribosomes (ed. Nomura, M.) 489–519 (Cold Spring Harbor Laboratory Press, New York, 1974).

    Google Scholar 

  2. Rogers, S. O. & Bendich, A. J. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9, 509–520 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Flavell, R. B. The structure and control of expression of ribosomal RNA genes. Oxford Surv. Plant Mol. Cell. Biol. 3, 252–274 (1986).

    Google Scholar 

  4. McClintock, B. The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Zeit. Zellforsch. Mik. Anat. 21, 294–328 (1934). A chromosome breakage and translocation event that caused two nucleoli to form, instead of the usual one, shows that the nucleolus forms at a specific chromosomal locus that comprises redundant genetic information, later shown to be the repeated rRNA genes (see references 5–7).

    Article  Google Scholar 

  5. Wallace, H. & Birnstiel, M. L. Ribosomal cistrons and the nucleolar organizer. Biochem. Biophys. Acta 114, 296–310 (1966).

    CAS  PubMed  Google Scholar 

  6. Phillips, R. L., Kleese, R. A. & Wang, S. S. The nucleolus organizer region of maize (Zea mays L.): Chromosomal site of DNA complementary to ribosomal RNA. Chromosoma 36, 79–88 (1971).

    Article  Google Scholar 

  7. Ritossa, F. M. & Spiegelman, S. Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 53, 737–745 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hannan, K. M., Hannan, R. D. & Rothblum, L. I. Transcription by RNA polymerase I. Front. Biosci. 3, 376–398 (1998).

    Article  Google Scholar 

  9. Grummt, I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog. Nucleic Acid Res. Mol. Biol. 62, 109–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Reeder, R. H. Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog. Nucleic Acid Res. Mol. Biol. 62, 293–327 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Moss, T. & Stefanovsky, V. Y. At the center of eukaryotic life. Cell 109, 545–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Paule, M. R. & White, R. J. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 1283–1298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scheer, U. & Weisenberger, D. The nucleolus. Curr. Opin. Cell Biol. 6, 354–359 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Pederson, T. The plurifunctional nucleolus. Nucleic Acids Res. 26, 3871–3876. (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKnight, S. L. & Miller, O. L. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell 8, 305–319 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Morgan, G. T., Reeder, R. H. & Bakken, A. H. Transcription in cloned spacers of Xenopus laevis ribosomal DNA. Proc. Natl Acad. Sci. USA 80, 6490–6494 (1983). This paper, as well as reference 15, provides electron-microscopic evidence that actively transcribed rRNA genes can be adjacent to silent rRNA genes, indicating that the genes are regulated independently.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. French, S. L., Osheim, Y. N., Cioci, F., Nomura, M. & Beyer, A. L. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 23, 1558–1568 (2003). Electron-microscopic examinations show that a yeast strain with reduced numbers of rRNA genes transcribes as much rRNA as a wild-type strain due to an increased number of transcribing polymerases per gene, indicating that the rate of polymerase initiation can be modulated several-fold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muscarella, D. E., Vogt, V. M. & Bloom, S. E. The ribosomal RNA gene cluster in aneuploid chickens: evidence for increased gene dosage and regulation of gene expression. J. Cell Biol. 101, 1749–1756 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Muscarella, D. E., Vogt, V. M. & Bloom, S. E. Characterization of ribosomal RNA synthesis in a gene dosage mutant: the relationship of topoisomerase I and chromatin structure to transcriptional activity. J. Cell Biol. 105, 1501–1513 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Ingle, J., Timmis, J. & Sinclair, J. The relationship between satellite DNA, ribosomal RNA redundancy and genome size in plants. Plant Physiol. 55, 496–501 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Navashin, M. Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia 5, 169–203 (1934). Provides the first detailed description of nucleolar dominance based on cytogenetic analysis of 22 inter-species hybrid combinations.

    Article  Google Scholar 

  22. Reeder, R. H. Mechanisms of nucleolar dominance in animals and plants. J. Cell Biol. 101, 2013–2016 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Pikaard, C. S. The epigenetics of nucleolar dominance. Trends Genet. 16, 495–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lewis, M. S. & Pikaard, C. S. Restricted chromosomal silencing in nucleolar dominance. Proc. Natl Acad. Sci. USA 98, 14536–14540 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Macleod, D. & Bird, A. DNase I sensitivity and methylation of active versus inactive rRNA genes in Xenopus species hybrids. Cell 29, 211–218 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, W. F. & Flavell, R. B. DNase I sensitivity of ribosomal RNA genes in chromatin and nucleolar dominance in wheat. J. Mol. Biol. 204, 535–548 (1988). This paper, as well as reference 25, exploits nucleolar dominance in hybrids to show that the active rRNA genes have a more open, DNase-accessible chromatin conformation than inactive rRNA genes.

    Article  CAS  PubMed  Google Scholar 

  27. Conconi, A., Widmer, R. M., Koller, T. & Sogo, J. M. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57, 753–761 (1989). The first example of the psoralen-crosslinking technique to show that rRNA genes exist in two discrete states: an active state accessible to psoralen and a psoralen-inaccessible state thought to represent transcriptionally inactive genes.

    Article  CAS  PubMed  Google Scholar 

  28. Dammann, R., Lucchini, R., Koller, T. & Sogo, J. M. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 21, 2331–2338 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dammann, R., Lucchini, R., Koller, T. & Sogo, J. M. Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol. Cell. Biol. 15, 5294–5303 (1995). This study compares wild-type and Pol-I-deficient yeast strains and shows that formation of the open, psoralen-accessible state of rRNA genes is only formed if Pol I molecules are transcribing the template.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, O. L. & Beatty, B. R. Visualization of nucleolar genes. Science 164, 955–957. This classic electron-microscopic study shows for the first time that an rDNA cluster contains many transcription units, each separated from the next by a non-transcribed spacer.

  31. Lucchini, R. & Sogo, J. M. Chromatin structure and transcriptional activity around the replication forks arrested at the 3' end of the yeast rRNA genes. Mol. Cell. Biol. 14, 318–326 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lucchini, R. & Sogo, J. M. Replication of transcriptionally active chromatin. Nature 374, 276–280 (1995). This paper, and reference 31, show that both copies of newly replicated rRNA gene DNA is packaged into a psoralen-inaccessible state, which indicates that activation and establishment of the open state is accomplished anew in each cell cycle.

    Article  CAS  PubMed  Google Scholar 

  33. Prior, C. P. et al. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell 34, 1033–1042 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II: Loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sandmeier, J. J. et al. RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J. 21, 4959–4968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bodem, J. et al. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p. EMBO Rep. 1, 171–175 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peyroche, G. et al. The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J. 19, 5473–5482 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Milkereit, P. & Tschochner, H. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J. 17, 3692–3703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Bird, A., Taggart, M. & Macleod, D. Loss of rDNA methylation accompanies the onset of ribosomal gene activity in early development of X. laevis. Cell 26, 381–390 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Macleod, D. & Bird, A. Transcription in oocytes of highly methylated rDNA from Xenopus laevis sperm. Nature 306, 200–203 (1983).

    Article  CAS  PubMed  Google Scholar 

  43. Flavell, R. B., O'Dell, M. & Thompson, W. F. Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J. Mol. Biol. 204, 523–534 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Houchins, K., O'Dell, M., Flavell, R. B. & Gustafson, J. P. Cytosine methylation and nucleolar dominance in cereal hybrids. Mol. Gen. Genet. 255, 294–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Z. J. & Pikaard, C. S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11, 2124–2136 (1997). This study shows that silenced rRNA genes subjected to nucleolar dominance could be de-repressed by blocking cytosine methylation or histone deacetylation, providing one of the first suggestions for a partnership between DNA and histone modifications in gene silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Viera, A., Morais, L., Barao, A., Mello-Sampayo, T. & Viegas, W. S. 1R chromosome nucleolus organizer region activation by 5-azacytidine in wheat x rye hybrids. Genome 33, 707–712 (1990).

    Article  Google Scholar 

  47. Chen, Z. J., Comai, L. & Pikaard, C. S. Gene dosage and stochastic effects determine the severity and direction of uniparental rRNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl Acad. Sci. USA 95, 14891–14896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santoro, R. & Grummt, I. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol. Cell 8, 719–725 (2001). This paper shows that methylation of a single promoter CpG site could block the binding of a key transcription factor, but only if the promoter template was assembled in chromatin, thereby showing a link between methylation and chromatin-mediated gene silencing.

    Article  CAS  PubMed  Google Scholar 

  49. Richards, E. J. & Elgin, S. C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45. (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Rice, J. C. & Allis, C. D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol. 13, 263–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Santoro, R., Li, J. & Grummt, I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature Genet. 32, 393–396 (2002). This study shows a link between NoRC association with the rRNA gene promoter and de novo DNA methylation, histone H3-Lys9 methylation and heterochromatin protein 1 recruitment, which results in rRNA gene silencing.

    Article  CAS  PubMed  Google Scholar 

  60. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Bartsch, I., Schoneberg, C. & Grummt, I. Purification and characterization of TTFI, a factor that mediates termination of mouse ribosomal DNA transcription. Mol. Cell. Biol. 8, 3891–3897 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Längst, G., Blank, T. A., Becker, P. B. & Grummt, I. RNA polymerase I transcription on nucleosomal templates: the transcription termination factor TTF-I induces chromatin remodeling and relieves transcriptional repression. EMBO J. 16, 760–768 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Längst, G., Becker, P. B. & Grummt, I. TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J. 17, 3135–3145 (1998). This paper, as well as reference 63, show that TTF-I, together with an ATP-dependent chromatin remodelling activity, alters the position of nucleosomes on the rRNA gene promoter, to facilitate rDNA transcription.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kulkens, T., van der Sande, C. A., Dekker, A. F., van Heerikhuizen, H. & Planta, R. J. A system to study transcription by yeast RNA polymerase I within the chromosomal context: functional analysis of the ribosomal DNA enhancer and the RBP1/REB1 binding sites. EMBO J. 11, 4665–4674 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Längst, G. & Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561–2568 (2001).

    Article  PubMed  Google Scholar 

  67. LeRoy, G., Loyola, A., Lane, W. S. & Reinberg, D. Purification and characterization of a human factor that assembles and remodels chromatin. J. Biol. Chem. 275, 14787–14790 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Bochar, D. A. et al. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl Acad. Sci. USA 97, 1038–1043 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poot, R. A. et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bozhenok, L., Wade, P. A. & Varga-Weisz, P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21, 2231–2241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Strohner, R. et al. NoRC — a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20, 4892–4900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 19, 6141–6149 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Horn, P. J. & Peterson, C. L. The bromodomain: a regulator of ATP-dependent chromatin remodeling? Front. Biosci. 6, 1019–1023 (2001).

    Article  Google Scholar 

  76. Schultz, D. C., Friedman, J. R. & Rauscher, F. J. 3rd. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2a subunit of NuRD. Genes Dev. 15, 428–443 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, Y., Santoro, R. & Grummt, I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 21, 4632–4640 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pandey, R. et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30, 5036–5055 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Boyer, L. A. et al. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem. 275, 18864–18870 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Brehm, A. et al. dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. EMBO J. 19, 4332–4341 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20, 7643–7653 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson, R, & Strehler, B. L. Loss of genes coding for ribosomal RNA in aging brain cells. Nature 240, 412–414 (1972).

    Article  CAS  PubMed  Google Scholar 

  85. Oakes, C. C. et al. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc. Natl Acad. Sci. USA 100, 1775–1780 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Turker, M. S. Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21, 5388–5393 (2002)

    Article  CAS  PubMed  Google Scholar 

  87. Gibbons, R. J. et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nature Genet. 24, 368–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Ayer, D. E. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 5, 193–198 (1999).

    Article  Google Scholar 

  89. Aasland, R., Gibson, T. J. & Stewart, A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Jones, M. H., Hamana, N., Nezu, J. & Shimane, M. A novel family of bromodomain genes. Genomics 63, 40–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Doerks, T., Copley, R. & Bork, P. DDT — a novel domain in different transcription and chromosome remodeling factors. Trends Biochem. Sci. 26, 145–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Ito, T., Levenstein, M. E., Fyodorov, D. V., Kutach, A. K., Kobayashi, R. & Kadonaga, J. T. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aravind, L. & Landsman, D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26, 4413–4421 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our apologies to all colleagues whose work has not been cited in the original because of space constraints. We thank the members of our laboratories and anonymous reviewers for critical comments and discussion. Research in the Grummt lab has been supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the BMBF. Research in the Pikaard lab is supported by the National Institutes of Health, the National Science Foundation and the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

FlyBase

ISWI

Su(var)3-9

InterPro

AT-hook

bromodomain

PHD

LocusLink

ACF1

CBP

HDACs

p300

TAF1

WSTF

OMIM

α-thalassaemia X-linked mental retardation (ATR-X) syndrome

Saccharomyces Genome Database

Rrn3

Sap30

Swiss-Prot

CARM1

Cockayne's Syndrome B

DNMT1

DNMT3a

DNMT3b

PCAF

Rpd3

Sin3

SUV39H

Swi6

TIF-IA

TIP5

TTF-I

UBF

Glossary

NUCLEOLUS ORGANIZER REGION

(NOR). Cluster of genes, arrayed head-to-tail, that encodes precursor ribosomal RNAs. A NOR includes active rRNA genes, which give rise to secondary constrictions of metaphase chromosomes, and silent rRNA genes, which are compacted in heterochromatin.

RNA POLYMERASE I

(Pol I). One of three classes of eukaryotic nuclear DNA-dependent RNA polymerases that is located in the nucleolus and is responsible for the synthesis of precursor ribosomal RNA (pre-rRNA), which, in vertebrates, is processed into 28S, 5.8S and 18S rRNAs.

EPIGENETIC

Any heritable change in gene expression that is not caused by a change in DNA sequence.

EUCHROMATIN

Chromosome region that does not stain intensely with DNA-binding dyes due to the fact that the chromatin is relatively uncondensed. Transcriptionally active genes are typically located within euchromatic regions of the genome.

HETEROCHROMATIN

A densely staining, highly condensed form of chromatin that generally corresponds to transcriptionally inactive regions of the genome.

PRE-INITIATION COMPLEX

The full set of transcription factors and RNA polymerase subunits correctly assembled on the gene promoter such that transcription can take place if nucleotide triphosphates are provided.

CpG RESIDUE

DNA methylation in mammalian cells occurs at the 5′-position of cytosine within CpG dinucleotides. By convention, the phosphate forming the phosphodiester bond between the cytosine and guanosine residues is included.

HETEROCHROMATIN PROTEIN 1

(HP1). A non-histone chromosomal protein first identified in Drosophila but with homologues in mammals and plants. HP1 is implicated in establishing and maintaining higher-order chromatin structures and in gene silencing.

HISTONE METHYLTRANSFERASE

Enzyme that transfers methyl groups onto lysine or arginine residues of histones. The enzyme typically has a domain known as the SET domain (an acronym formed using the first letters for the three founding members of the family).

CHROMATIN IMMUNOPRECIPITATION

(ChIP). A technique that isolates specific gene sequences from formaldehyde-fixed soluble chromatin using antibodies that recognize specific chromosomal proteins.

HISTONE DEACETYLASE

Enzyme that removes acetyl groups from lysines. Histone deacetylation is typically correlated with transcriptional inactivity.

BROMODOMAIN

A highly conserved sequence motif that is present in many chromatin-associated proteins and recognizes acetylated lysine residues.

PHD FINGER

A zinc-finger-like motif that is involved in protein–protein interactions and chromatin-mediated gene regulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grummt, I., Pikaard, C. Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 4, 641–649 (2003). https://doi.org/10.1038/nrm1171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing