Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular era of the mitochondrial calcium uniporter

Key Points

  • The molecular identity of the human mitochondrial calcium uniporter has now been elucidated using integrative genomics. The mammalian uniporter is a protein complex consisting of the inner membrane-spanning subunits mitochondrial calcium uniporter protein (MCU), MCUb and essential MCU regulator (EMRE), together with mitochondrial calcium uptake protein 1 (MICU1) and MICU2 in the intermembrane space.

  • Expression of human MCU and EMRE is sufficient to reconstitute uniporter pore activity in vivo.

  • MICU1 and MICU2 operate together in the intermembrane space to sense calcium concentration and regulate the uniporter.

  • Loss of uniporter activity can be tolerated in vivo in organisms including trypanosomes, worms and mice.

  • Genetic studies in cells and in model organisms are converging on a key function for this channel in the coupling of cellular ATP consumption with its production (termed excitation–energetic coupling). The role of the channel in cell death and apoptosis remains controversial.

  • Inherited mutations in the uniporter machinery have been identified in patients with neuromuscular disease.

  • Next steps include using structural biology to gain mechanistic insights into the uniporter and investigating pathologies associated with the manipulation of uniporter activity, which may suggest a therapeutic strategy for targeting the uniporter.

Abstract

The mitochondrial calcium uniporter is an evolutionarily conserved calcium channel, and its biophysical properties and relevance to cell death, bioenergetics and signalling have been investigated for decades. However, the genes encoding this channel have only recently been discovered, opening up a new 'molecular era' in the study of its biology. We now know that the uniporter is not a single protein but rather a macromolecular complex consisting of pore-forming and regulatory subunits. We review recent studies that harnessed the power of molecular biology and genetics to characterize the mechanism of action of the uniporter, its evolution and its contribution to physiology and human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The calcium uniporter: context and components.
Figure 2: Regulation of the uniporter by calcium.

Similar content being viewed by others

References

  1. Berridge, M. J., Bootman, M. D. & Lipp, P. Calcium—a life and death signal. Nature 395, 645–648 (1998).

    Article  CAS  Google Scholar 

  2. Deluca, H. F. & Engstrom, G. W. Calcium uptake by rat kidney mitochondria. Proc. Natl Acad. Sci. USA 47, 1744–1750 (1961).

    Article  CAS  Google Scholar 

  3. Vasington, F. D. & Murphy, J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J. Biol. Chem. 237, 2670–2677 (1962).

    CAS  PubMed  Google Scholar 

  4. Gunter, T. E. & Pfeiffer, D. R. Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755–C786 (1990).

    Article  CAS  Google Scholar 

  5. Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004). This study used mitoplast electrophysiology to rigorously characterize the uniporter current, showing that the uniporter is a highly selective calcium channel with high conductance.

    Article  CAS  Google Scholar 

  6. Palty, R. et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl Acad. Sci. USA 107, 436–441 (2010).

    Article  CAS  Google Scholar 

  7. Jiang, D., Zhao, L. & Clapham, D. E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144–147 (2009).

    Article  CAS  Google Scholar 

  8. Denton, R. M. & McCormack, J. G. The role of calcium in the regulation of mitochondrial metabolism. Biochem. Soc. Trans. 8, 266–270 (1980).

    Article  CAS  Google Scholar 

  9. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995).

    Article  CAS  Google Scholar 

  10. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P. & Lechleiter, J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441 (1995).

    Article  CAS  Google Scholar 

  11. Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).

    Article  CAS  Google Scholar 

  12. Duchen, M. R. Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529, 57–68 (2000).

    Article  CAS  Google Scholar 

  13. Ma, J. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle. J. Gen. Physiol. 102, 1031–1056 (1993).

    Article  CAS  Google Scholar 

  14. Cibulsky, S. M. & Sather, W. A. Block by ruthenium red of cloned neuronal voltage-gated calcium channels. J. Pharmacol. Exp. Ther. 289, 1447–1453 (1999).

    CAS  PubMed  Google Scholar 

  15. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  Google Scholar 

  16. Carafoli, E. & Lehninger, A. L. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem. J. 122, 681–690 (1971).

    Article  CAS  Google Scholar 

  17. Docampo, R. & Vercesi, A. E. Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. J. Biol. Chem. 264, 108–111 (1989).

    CAS  PubMed  Google Scholar 

  18. Perocchi, F. et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296 (2010). This article reports the identification of the first uniporter molecular component, MICU1, which paved the way for the identification of the rest of the complex.

    Article  CAS  Google Scholar 

  19. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    Article  CAS  Google Scholar 

  20. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011). References 19 and 20 identify MCU, which is the pore-forming subunit of the uniporter.

    Article  CAS  Google Scholar 

  21. Plovanich, M. et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE 8, e55785–e55785 (2013).

    Article  CAS  Google Scholar 

  22. Raffaello, A. et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32, 2362–2376 (2013).

    Article  CAS  Google Scholar 

  23. Sancak, Y. et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342, 1379–1382 (2013). This study used affinity purification of epitope-tagged human MCU followed by quantitative proteomics to characterize the uniporter holocomplex (uniplex), showing that it consists of MCU and its paralogue MCUb, MICU1 and its paralogue MICU2, and a small membrane-spanning, metazoa-specific protein EMRE.

    Article  CAS  Google Scholar 

  24. Sather, W. A. & McCleskey, E. W. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65, 133–159 (2003).

    Article  CAS  Google Scholar 

  25. Chaudhuri, D., Sancak, Y., Mootha, V. K. & Clapham, D. E. MCU encodes the pore conducting mitochondrial calcium currents. eLife 2, e00704 (2013).

    Article  Google Scholar 

  26. Kovacs-Bogdan, E. et al. Reconstitution of the mitochondrial calcium uniporter in yeast. Proc. Natl Acad. Sci. USA 111, 8985–8990 (2014). This study used heterologous expression of human MCU and human EMRE in yeast to show the minimal genetic components that are required for in vivo reconstitution of uniporter activity.

    Article  CAS  Google Scholar 

  27. Bragadin, M., Pozzan, T. & Azzone, G. F. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18, 5972–5978 (1979).

    Article  CAS  Google Scholar 

  28. Igbavboa, U. & Pfeiffer, D. R. EGTA inhibits reverse uniport-dependent Ca2+ release from uncoupled mitochondria. Possible regulation of the Ca2+ uniporter by a Ca2+ binding site on the cytoplasmic side of the inner membrane. J. Biol. Chem. 263, 1405–1412 (1988).

    CAS  Google Scholar 

  29. Moreau, B., Nelson, C. & Parekh, A. B. Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr. Biol. 16, 1672–1677 (2006).

    Article  CAS  Google Scholar 

  30. Csordas, G. et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. 17, 976–987 (2013).

    Article  CAS  Google Scholar 

  31. Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55, 332–341 (2014).

    Article  CAS  Google Scholar 

  32. Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    Article  CAS  Google Scholar 

  33. Mallilankaraman, K. et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 151, 630–644 (2012).

    Article  CAS  Google Scholar 

  34. Kamer, K. J. & Mootha, V. K. MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 15, 299–307 (2014).

    Article  CAS  Google Scholar 

  35. Kamer, K. J., Sancak, Y. & Mootha, V. K. The uniporter: from newly identified parts to function. Biochem. Biophys. Res. Commun. 449, 370–372 (2014).

    Article  CAS  Google Scholar 

  36. Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  Google Scholar 

  37. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  Google Scholar 

  38. Patron, M. et al. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell 53, 726–737 (2014).

    Article  CAS  Google Scholar 

  39. Wang, L. et al. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake. EMBO J. 33, 594–604 (2014).

    Article  CAS  Google Scholar 

  40. Bygrave, F. L. & Ash, G. R. Development of mitochondrial calcium transport activity in rat liver. FEBS Lett. 80, 271–274 (1977).

    Article  CAS  Google Scholar 

  41. Fieni, F., Lee, S. B., Jan, Y. N. & Kirichok, Y. Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat. Commun. 3, 1317 (2012).

    Article  Google Scholar 

  42. Hoffman, N. E. et al. SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol. Biol. Cell 25, 936–947 (2014).

    Article  Google Scholar 

  43. Mallilankaraman, K. et al. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 14, 1336–1343 (2012).

    Article  CAS  Google Scholar 

  44. Paupe, V., Prudent, J., Dassa, E. P., Rendon, O. Z. & Shoubridge, E. A. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab. 21, 109–116 (2015).

    Article  CAS  Google Scholar 

  45. Palty, R. et al. Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J. Biol. Chem. 279, 25234–25240 (2004).

    Article  CAS  Google Scholar 

  46. Trenker, M., Malli, R., Fertschai, I., Levak-Frank, S. & Graier, W. F. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat. Cell Biol. 9, 445–452 (2007).

    Article  CAS  Google Scholar 

  47. Shanmughapriya, S. et al. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci. Signal. 8, ra23 (2015).

    Article  CAS  Google Scholar 

  48. Qiu, J. et al. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat. Commun. 4, 2034 (2013).

    Article  Google Scholar 

  49. Marchi, S. et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23, 58–63 (2013).

    Article  CAS  Google Scholar 

  50. Pan, X. et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15, 1464–1472 (2013). This is a report of the surprising finding that genetic ablation of MCU can be tolerated in mice, with the primary phenotype being small size and exercise intolerance.

    Article  CAS  Google Scholar 

  51. Alam, M. R. et al. Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial Ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells. J. Biol. Chem. 287, 34445–34454 (2012).

    Article  CAS  Google Scholar 

  52. Tarasov, A. I. et al. Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic β cells. Pflugers Arch. 465, 543–554 (2013).

    Article  CAS  Google Scholar 

  53. Samanta, K., Douglas, S. & Parekh, A. B. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS ONE 9, e101188 (2014).

    Article  Google Scholar 

  54. Deak, A. T. et al. IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J. Cell Sci. 127, 2944–2955 (2014).

    Article  CAS  Google Scholar 

  55. Triantafilou, K., Hughes, T. R., Triantafilou, M. & Morgan, B. P. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci. 126, 2903–2913 (2013).

    Article  CAS  Google Scholar 

  56. Rimessi, A. et al. Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nat. Commun. 6, 6201 (2015).

    Article  Google Scholar 

  57. Huang, G., Vercesi, A. E. & Docampo, R. Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat. Commun. 4, 2865 (2013).

    Article  Google Scholar 

  58. Hall, D. D., Wu, Y., Domann, F. E., Spitz, D. R. & Anderson, M. E. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival. PLoS ONE 9, e96866 (2014).

    Article  Google Scholar 

  59. Xu, S. & Chisholm, A. D. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev. Cell 31, 48–60 (2014).

    Article  CAS  Google Scholar 

  60. Murphy, E. et al. Unresolved questions from the analysis of mice lacking MCU expression. Biochem. Biophys. Res. Commun. 449, 384–385 (2014).

    Article  CAS  Google Scholar 

  61. Wu, Y. et al. The mitochondrial uniporter controls fight or flight heart rate increases. Nat. Commun. 6, 6081 (2015).

    Article  CAS  Google Scholar 

  62. Logan, C. V. et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet. 46, 188–193 (2013). This is the first report of patients with genetic defects of the uniporter, showing that inherited mutations in MICU1 can underlie neuromuscular disease.

    Article  Google Scholar 

  63. Vafai, S. B. & Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383 (2012).

    Article  CAS  Google Scholar 

  64. Bick, A. G., Calvo, S. E. & Mootha, V. K. Evolutionary diversity of the mitochondrial calcium uniporter. Science 336, 886–886 (2012).

    Article  CAS  Google Scholar 

  65. Prudent, J. et al. Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. Nat. Commun. 4, 2330 (2013).

    Article  Google Scholar 

  66. van Deursen, J. et al. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74, 621–631 (1993).

    Article  CAS  Google Scholar 

  67. Garry, D. J., Meeson, A., Yan, Z. & Williams, R. S. Life without myoglobin. Cell. Mol. Life Sci. 57, 896–898 (2000).

    Article  CAS  Google Scholar 

  68. Yoon, M.J. et al. Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget 5, 6816–6831 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Wiel, C. et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat. Commun. 5, 3792 (2014).

    Article  CAS  Google Scholar 

  70. Hoffman, N.E. et al. MICU1 motifs define mitochondrial calcium uniporter binding and activity. Cell Rep. 5, 1576–1588 (2013).

    Article  CAS  Google Scholar 

  71. Drago, I., De Stefani, D., Rizzuto, R. & Pozzan, T. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc. Natl Acad. Sci. USA 109, 12986–12991 (2012).

    Article  CAS  Google Scholar 

  72. Mammucari, C. et al. The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep. 10, 1269–1279 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsi K. Mootha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mitoplast

A mitochondrion without the outer membrane.

EF hand

A calcium-binding motif consisting of a helix–loop–helix structure.

Excitation–energetic coupling

The coupling of cellular ATP consumption with its production.

Leukotriene receptor

A receptor that is present in immune cells, which can be activated by leukotrienes to lead to an inflammatory cascade.

Store-operated calcium entry

(SOCE). A mechanism to replenish endoplasmic reticulum calcium stores, which occurs through calcium release-activated channels in the plasma membrane.

NLRP3 inflammasome

A large protein complex that is part of the innate immune system; it can be activated by many different stimuli to trigger inflammatory processes.

Tricarboxylic acid (TCA) cycle

A series of enzymatic reactions in the mitochondrial matrix that take acetyl coenzyme A through a series of oxidation steps, which are important for many biosynthetic pathways and also produce reducing equivalents to feed into the respiratory chain. Two enzymes in the TCA cycle, α-ketoglutarate dehydrogenase and isocitrate dehydrogenase, are activated by matrix calcium ions.

Skeletal muscle myopathy

A disorder of skeletal muscle that can manifest as weakness, cramps or exercise intolerance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamer, K., Mootha, V. The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16, 545–553 (2015). https://doi.org/10.1038/nrm4039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing