Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelins in cardiovascular biology and therapeutics

Abstract

Cardiovascular disease is a major contributor to global morbidity and mortality and is the common end point of many chronic diseases. The endothelins comprise three structurally similar peptides of 21 amino acids in length. Endothelin 1 (ET-1) and ET-2 activate two G protein-coupled receptors — endothelin receptor type A (ETA) and endothelin receptor type B (ETB) — with equal affinity, whereas ET-3 has a lower affinity for ETA. ET-1 is the most potent vasoconstrictor in the human cardiovascular system and has remarkably long-lasting actions. ET-1 contributes to vasoconstriction, vascular and cardiac hypertrophy, inflammation, and to the development and progression of cardiovascular disease. Endothelin receptor antagonists have revolutionized the treatment of pulmonary arterial hypertension. Clinical trials continue to explore new applications of endothelin receptor antagonists, particularly in treatment-resistant hypertension, chronic kidney disease and patients receiving antiangiogenic therapies. Translational studies have identified important roles for the endothelin isoforms and new therapeutic targets during development, in fluid-electrolyte homeostasis, and in cardiovascular and neuronal function. Novel pharmacological strategies are emerging in the form of small-molecule epigenetic modulators, biologics (such as monoclonal antibodies for ETB) and possibly signalling pathway-biased agonists and antagonists.

Key points

  • Endothelin 1 (ET-1) is the most potent endogenous vasoconstrictor and contributes to basal vascular tone as well as a number of diseases, such as hypertension, chronic kidney disease (CKD), pulmonary arterial hypertension (PAH) and pre-eclampsia.

  • A common non-coding gene sequence variant regulates the expression of EDN1 (encoding ET-1) and is linked to five common vascular conditions: coronary artery disease, hypertension, migraine, cervical artery dissection and fibromuscular hyperplasia.

  • The effects of ET-1 are mediated via two G protein-coupled receptors, endothelin receptor type A (ETA) and endothelin receptor type B (ETB); selective ETA and dual ETA/ETB receptor antagonists (endothelin receptor antagonists; ERAs) are available for clinical use.

  • The phase III PRECISION study will explore the use of a long-acting, selective ETA antagonist in treatment-resistant hypertension.

  • For many patients with PAH, ERAs are considered first-line treatment; ERAs also reduce blood pressure and proteinuria in CKD and show clinical potential in scleroderma renal crisis, the transition from acute kidney injury to CKD and end-stage renal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endothelin 1 synthesis and sites of action.
Fig. 2: Endothelin receptor mRNA expression in different organs.
Fig. 3: Effects of endothelin 1 in the kidney.

Similar content being viewed by others

References

  1. Hickey, K. A., Rubanyi, G., Paul, R. J. & Highsmith, R. F. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248, C550–C556 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Yanagisawa, M. et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Haynes, W. G. & Webb, D. J. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 344, 852–854 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Haynes, W. G. et al. Systemic endothelin receptor blockade decreases peripheral vascular resistance and blood pressure in humans. Circulation 93, 1860–1870 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. MacIntyre, I. M. et al. Greater functional ETB receptor antagonism with bosentan than sitaxsentan in healthy men. Hypertension 55, 1406–1411 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Davenport, P. et al. Endothelin. Pharmacol. Rev. 68, 357–418 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ge, Y. et al. Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention. Am. J. Physiol. 291, F1274–F1280 (2006).

    CAS  Google Scholar 

  8. Gupta, R. M. et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell 170, 522–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boss, C., Bolli, M. H. & Gatfield, J. From bosentan (Tracleer(R)) to macitentan (Opsumit(R)): The medicinal chemistry perspective. Bioorg. Med. Chem. Lett. 26, 3381–3394 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Wei, A. et al. Clinical adverse effects of endothelin receptor antagonists: insights from the meta-analysis of 4894 patients from 24 randomized double-blind placebo-controlled clinical trials. J. Am. Heart Assoc. 5, e003896 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lariviere, R., Day, R. & Schiffrin, E. L. Increased expression of endothelin-1 gene in blood vessels of deoxycorticosterone acetate-salt hypertensive rats. Hypertension 21, 916–920 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J. S., Lariviere, R. & Schiffrin, E. L. Effect of a nonselective endothelin antagonist on vascular remodeling in deoxycorticosterone acetate-salt hypertensive rats. Evidence for a role of endothelin in vascular hypertrophy. Hypertension 24, 183–188 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1345–1422 (2017).

    Article  Google Scholar 

  14. Krum, H., Viskoper, R. J., Lacourciere, Y., Budde, M. & Charlon, V. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. N. Engl. J. Med. 338, 784–790 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Nakov, R., Pfarr, E. & Eberle, S. Darusentan: an effective endothelinA receptor antagonist for treatment of hypertension. Am. J. Hypertens. 15, 583–589 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Calhoun, D. A. et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51, 1403–1419 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Schiffrin, E. L., Deng, L. Y., Sventek, P. & Day, R. Enhanced expression of endothelin-1 gene in resistance arteries in severe human essential hypertension. J. Hypertens. 15, 57–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Weber, M. A. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet 374, 1423–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Bakris, G. L. et al. Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial. Hypertension 56, 824–830 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Webb, D. J. DORADO: opportunity postponed: lessons from studies of endothelin receptor antagonists in treatment-resistant hypertension. Hypertension 56, 806–807 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Williams, B. et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386, 2059–2068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iglarz, M. et al. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 327, 736–745 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Idorsia. Drug discovery & clinical development. idorsia https://www.idorsia.com/documents/com/fact-sheets-presentations/fs-clinical-development.pdf (2019).

  24. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02603809 (2019).

  25. Nelson, J. B. et al. Phase 3, randomized, placebo-controlled study of zibotentan (ZD4054) in patients with castration-resistant prostate cancer metastatic to bone. Cancer 118, 5709–5718 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Vercauteren, M. et al. Endothelin ETA receptor blockade, by activating ETB receptors, increases vascular permeability and induces exaggerated fluid retention. J. Pharmacol. Exp. Ther. 361, 322–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Sakai, S. et al. Endogenous endothelin-1 participates in the maintenance of cardiac function in rats with congestive heart failure. Marked increase in endothelin-1 production in the failing heart. Circulation 93, 1214–1222 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Sakai, S. et al. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384, 353–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Gray, G. A. & Webb, D. J. The endothelin system and its potential as a therapeutic target in cardiovascular disease. Pharmacol. Ther. 72, 109–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Kiowski, W. et al. Evidence for endothelin-1-mediated vasoconstriction in severe chronic heart failure. Lancet 346, 732–736 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Cowburn, P. J. et al. Short-term haemodynamic effects of BQ-123, a selective endothelin ETA-receptor antagonist, in chronic heart failure. Lancet 352, 201–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Kelland, N. F. & Webb, D. J. Clinical trials of endothelin antagonists in heart failure: publication is good for the public health. Heart 93, 2–4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Battistini, B., Berthiaume, N., Kelland, N. F., Webb, D. J. & Kohan, D. E. Profile of past and current clinical trials involving endothelin receptor antagonists: the novel “-sentan” class of drugs. Exp. Biol. Med. (Maywood) 231, 653–695 (2006).

    CAS  Google Scholar 

  34. Anand, I. et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the Endothelin A Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 364, 327–354 (2004).

    PubMed  Google Scholar 

  35. Kaluski, E. et al. Clinical and hemodynamic effects of bosentan dose optimization in symptomatic heart failure patients with severe systolic dysfunction, associated with secondary pulmonary hypertension – a multi-center randomized study. Cardiology 109, 273–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Zile, M. R. et al. Randomized, double-blind, placebo-controlled study of sitaxsentan to improve impaired exercise tolerance in patients with heart failure and a preserved ejection fraction. JACC Heart Fail. 2, 123–130 (2014).

    Article  PubMed  Google Scholar 

  37. Teerlink, J. R. in Acute Heart Failure (eds Mebazaa, A., Gheorghiade, M., Zannad, F. M. & Parrillo, J. E.) 626–638 (Springer, 2008).

  38. O’Connor, C. M. et al. Tezosentan in patients with acute heart failure and acute coronary syndromes: results of the Randomized Intravenous TeZosentan Study (RITZ-4). J. Am. Coll. Cardiol. 41, 1452–1457 (2003).

  39. Kaluski, E. et al. RITZ-5: randomized intravenous TeZosentan (an endothelin-A/B antagonist) for the treatment of pulmonary edema: a prospective, multicenter, double-blind, placebo-controlled study. J. Am. Coll. Cardiol. 41, 204–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. McMurray, J. J. et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA 298, 2009–2019 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Vaduganathan, M., Greene, S. J., Ambrosy, A. P., Gheorghiade, M. & Butler, J. The disconnect between phase II and phase III trials of drugs for heart failure. Nat. Rev. Cardiol. 10, 85–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Kelland, N. F. & Webb, D. J. Clinical trials of endothelin antagonists in heart failure: a question of dose? Exp. Biol. Med. (Maywood) 231, 696–699 (2006).

    CAS  Google Scholar 

  43. D’Alonzo, G. E. et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 115, 343–349 (1991).

    Article  PubMed  Google Scholar 

  44. Motte, S., McEntee, K. & Naeije, R. Endothelin receptor antagonists. Pharmacol. Ther. 110, 386–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Dupuis, J., Stewart, D. J., Cernacek, P. & Gosselin, G. Human pulmonary circulation is an important site for both clearance and production of endothelin-1. Circulation 94, 1278–1284 (1996).

    Article  Google Scholar 

  46. Dupuis, J., Moe, G. W. & Cernacek, P. Reduced pulmonary metabolism of endothelin-1 in canine tachycardia-induced heart failure. Cardiovasc. Res. 39, 609–616 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Ivy, D. et al. Endothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction. Am. J. Physiol. 280, L1040–L1048 (2001).

    CAS  Google Scholar 

  49. Muramatsu, M. et al. Chronic hypoxia augments endothelin-B receptor-mediated vasodilation in isolated perfused rat lungs. Am. J. Physiol. 276, L358–L364 (1999).

    CAS  PubMed  Google Scholar 

  50. Ivy, D. D., Parker, T. A. & Abman, S. H. Prolonged endothelin B receptor blockade causes pulmonary hypertension in the ovine fetus. Am. J. Physiol. 279, L758–L765 (2000).

    CAS  Google Scholar 

  51. Eddahibi, S., Raffestin, B., Clozel, M., Levame, M. & Adnot, S. Protection from pulmonary hypertension with an orally active endothelin receptor antagonist in hypoxic rats. Am. J. Physiol. 268, H828–H835 (1995).

    CAS  PubMed  Google Scholar 

  52. Sato, K. et al. Effects of separate and combined ETA and ETB blockade on ET-1-induced constriction in perfused rat lungs. Am. J. Physiol. 269, L668–L672 (1995).

    CAS  PubMed  Google Scholar 

  53. Galie, N. et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N. Engl. J. Med. 373, 834–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Thenappan, T., Ormiston, M. L., Ryan, J. J. & Archer, S. L. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ 360, j5492 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Galie, N. et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet 371, 2093–2100 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Pulido, T. et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N. Engl. J. Med. 369, 809–818 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Galie, N. et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 117, 3010–3019 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Hocher, B. et al. Pulmonary fibrosis and chronic lung inflammation in ET-1 transgenic mice. Am. J. Respir. Cell Mol. Biol. 23, 19–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Davie, N. et al. ET(A) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am. J. Respir. Crit. Care Med. 165, 398–405 (2002).

    Article  PubMed  Google Scholar 

  60. Nishida, M. et al. Role of endothelin ETB receptor in the pathogenesis of monocrotaline-induced pulmonary hypertension in rats. Eur. J. Pharmacol. 496, 159–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Nishida, M., Eshiro, K., Okada, Y., Takaoka, M. & Matsumura, Y. Roles of endothelin ETA and ETB receptors in the pathogenesis of monocrotaline-induced pulmonary hypertension. J. Cardiovasc. Pharmacol. 44, 187–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. de Zeeuw, D. et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 65, 2309–2320 (2004).

    Article  PubMed  Google Scholar 

  63. Dhaun, N. et al. Blood pressure-independent reduction in proteinuria and arterial stiffness after acute endothelin-a receptor antagonism in chronic kidney disease. Hypertension 54, 113–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Dhaun, N. et al. Selective endothelin-A receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease. Hypertension 57, 772–779 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Dhaun, N. et al. Endothelin-A receptor antagonism modifies cardiovascular risk factors in CKD. J. Am. Soc. Nephrol. 24, 31–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Wenzel, R. R. et al. Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J. Am. Soc. Nephrol. 60, 655–664 (2009).

    Article  Google Scholar 

  67. Kohan, D. E. et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J. Am. Soc. Nephrol. 22, 763–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dhaun, N. et al. Haemodynamic and renal effects of endothelin receptor antagonism in patients with chronic kidney disease. Nephrol. Dial. Transplant. 22, 3228–3234 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. de Zeeuw, D. et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1083–1093 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Czopek, A., Moorhouse, R., Webb, D. J. & Dhaun, N. Therapeutic potential of endothelin receptor antagonism in kidney disease. Am. J. Physiol. 310, R388–R397 (2016).

    Google Scholar 

  71. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01858532 (2018).

  72. Neuen, B. L. et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation 138, 1537–1550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trachtman, H. et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 29, 2745–2754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03493685 (2018).

  75. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03762850 (2019).

  76. Parvanova, A. et al. Effect on blood pressure of combined inhibition of endothelin-converting enzyme and neutral endopeptidase with daglutril in patients with type 2 diabetes who have albuminuria: a randomised, crossover, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 1, 19–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Ferro, C. J., Spratt, J. C., Haynes, W. G. & Webb, D. J. Inhibition of neutral endopeptidase causes vasoconstriction of human resistance vessels in vivo. Circulation 97, 2323–2330 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Hsu, C. Y. Where is the epidemic in kidney disease? J. Am. Soc. Nephrol. 21, 1607–1611 (2010).

    Article  PubMed  Google Scholar 

  79. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article  PubMed  Google Scholar 

  80. Odutayo, A. et al. AKI and long-term risk for cardiovascular events and mortality. J. Am. Soc. Nephrol. 28, 377–387 (2017).

    Article  PubMed  Google Scholar 

  81. Wald, R. et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302, 1179–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Dhaun, N., Goddard, J. & Webb, D. J. The endothelin system and its antagonism in chronic kidney disease. J. Am. Soc. Nephrol. 17, 943–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Wilhelm, S. M., Simonson, M. S., Robinson, A. V., Stowe, N. T. & Schulak, J. A. Endothelin up-regulation and localization following renal ischemia and reperfusion. Kidney Int. 55, 1011–1018 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Zager, R. A., Johnson, A. C., Andress, D. & Becker, K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 84, 703–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gellai, M., Jugus, M., Fletcher, T., DeWolf, R. & Nambi, P. Reversal of postischemic acute renal failure with a selective endothelin A receptor antagonist in the rat. J. Clin. Invest. 93, 900–906 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, C. et al. The effect of endothelin antagonists on renal ischaemia-reperfusion injury and the development of acute renal failure in the rat. Nephrol. Dial. Transplant. 17, 1578–1585 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Forbes, J. M., Leaker, B., Hewitson, T. D., Becker, G. J. & Jones, C. L. Macrophage and myofibroblast involvement in ischemic acute renal failure is attenuated by endothelin receptor antagonists. Kidney Int. 55, 198–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Barrera-Chimal, J. et al. Sulfenic acid modification of endothelin B receptor is responsible for the benefit of a nonsteroidal mineralocorticoid receptor antagonist in renal ischemia. J. Am. Soc. Nephrol. 27, 398–404 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. de Jager, D. J. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).

    Article  PubMed  Google Scholar 

  90. Totsune, K. et al. Detection of immunoreactive endothelin in plasma of hemodialysis patients. FEBS Lett. 249, 239–242 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Lariviere, R. et al. Endothelin type A receptor blockade reduces vascular calcification and inflammation in rats with chronic kidney disease. J. Hypertens. 35, 376–384 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Briet, M., Boutouyrie, P., Laurent, S. & London, G. M. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 82, 388–400 (2012).

    Article  PubMed  Google Scholar 

  93. Fuquay, R. et al. Renal ischemia-reperfusion injury amplifies the humoral immune response. J. Am. Soc. Nephrol. 24, 1063–1072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Raina, A., Horn, E. T. & Benza, R. L. The pathophysiology of endothelin in complications after solid organ transplantation: a potential novel therapeutic role for endothelin receptor antagonists. Transplantation 94, 885–893 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Penn, H. et al. Scleroderma renal crisis: patient characteristics and long-term outcomes. QJM 100, 485–494 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Denton, C. P. Renal manifestations of systemic sclerosis — clinical features and outcome assessment. Rheumatology 47 (Suppl. 5), v54–v56 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Abraham, D. J. et al. Increased levels of endothelin-1 and differential endothelin type A and B receptor expression in scleroderma-associated fibrotic lung disease. Am. J. Pathol. 151, 831–841 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02047708 (2017).

  99. Morris, C. D. et al. Specific inhibition of the endothelin A receptor with ZD4054: clinical and pre-clinical evidence. Br. J. Cancer 92, 2148–2152 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andresen, J., Shafi, N. I. & Bryan, R. M. Jr. Endothelial influences on cerebrovascular tone. J. Appl. Physiol. 100, 318–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Matsuo, Y., Mihara, S., Ninomiya, M. & Fujimoto, M. Protective effect of endothelin type A receptor antagonist on brain edema and injury after transient middle cerebral artery occlusion in rats. Stroke 32, 2143–2148 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Petrov, T. & Rafols, J. A. Acute alterations of endothelin-1 and iNOS expression and control of the brain microcirculation after head trauma. Neurol. Res. 23, 139–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Chow, M., Dumont, A. S. & Kassell, N. F. Endothelin receptor antagonists and cerebral vasospasm: an update. Neurosurgery 51, 1333–1341 (2002).

    Article  PubMed  Google Scholar 

  104. Macdonald, R. L., Pluta, R. M. & Zhang, J. H. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat. Clin. Pract. Neurol. 3, 256–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Vergouwen, M. D., Algra, A. & Rinkel, G. J. Endothelin receptor antagonists for aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis update. Stroke 43, 2671–2676 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02560532 (2018).

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03585270 (2019).

  108. Saleh, L., Danser, J. A. & van den Meiracker, A. H. Role of endothelin in preeclampsia and hypertension following antiangiogenesis treatment. Curr. Opin. Nephrol. Hypertens. 25, 94–99 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Lankhorst, S., Kappers, M. H., van Esch, J. H., Danser, A. H. & van den Meiracker, A. H. Mechanism of hypertension and proteinuria during angiogenesis inhibition: evolving role of endothelin-1. J. Hypertens. 31, 444–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kappers, M. H. et al. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension 56, 675–681 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. de Jesus-Gonzalez, N. et al. Regorafenib induces rapid and reversible changes in plasma nitric oxide and endothelin-1. Am. J. Hypertens. 25, 1118–1123 (2012).

    Article  PubMed  CAS  Google Scholar 

  113. Verdonk, K. et al. Association studies suggest a key role for endothelin-1 in the pathogenesis of preeclampsia and the accompanying renin-angiotensin-aldosterone system suppression. Hypertension 65, 1316–1323 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Zhou, J. et al. Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension 62, 599–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Murphy, S. R., LaMarca, B. B., Cockrell, K. & Granger, J. P. Role of endothelin in mediating soluble fms-like tyrosine kinase 1-induced hypertension in pregnant rats. Hypertension 55, 394–398 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Alexander, B. T. et al. Endothelin type A receptor blockade attenuates the hypertension in response to chronic reductions in uterine perfusion pressure. Hypertension 37, 485–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Lankhorst, S. et al. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study. Hypertension 64, 1282–1289 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Kappers, M. H. et al. Sunitinib-induced systemic vasoconstriction in swine is endothelin mediated and does not involve nitric oxide or oxidative stress. Hypertension 59, 151–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Rosano, L., Spinella, F. & Bagnato, A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 13, 637–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03557190 (2018).

  121. Bushnell, C. et al. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 1545–1588 (2014).

    Article  PubMed  Google Scholar 

  122. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02712346 (2019).

Download references

Acknowledgements

N.D. has research funding from the Medical Research Council to explore the role of the endothelin system in kidney disease (MRC ref: 6152177 I181211-0759).

Reviewer information

Nature Reviews Cardiology thanks E. Schiffrin and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content and wrote the manuscript. D.J.W. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Neeraj Dhaun.

Ethics declarations

Competing interests

N.D. has acted as a consultant for Retrophin. D.J.W. is a member of an Independent Data Monitoring Committee for a trial with AbbVie of atrasentan in diabetic renal disease and is the UK Chief Investigator for a trial with Idorsia of aprocitentan in treatment-resistant hypertension.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaun, N., Webb, D.J. Endothelins in cardiovascular biology and therapeutics. Nat Rev Cardiol 16, 491–502 (2019). https://doi.org/10.1038/s41569-019-0176-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0176-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing