Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics

Abstract

We have characterized comprehensive transcript and proteomic profiles of cell lines corresponding to normal breast (MCF10A), noninvasive breast cancer (MCF7) and invasive breast cancer (MDA-MB-231). The transcript profiles were first analysed by a modified protocol for representational difference analysis (RDA) of cDNAs between MCF7 and MDA-MB-231 cells. The majority of genes identified by RDA showed nearly complete concordance with microarray results, and also led to the identification of some differentially expressed genes such as lysyl oxidase, copper transporter ATP7A, EphB6, RUNX2 and a variant of RUNX2. The altered transcripts identified by microarray analysis were involved in cell–cell or cell–matrix interaction, Rho signaling, calcium homeostasis and copper-binding/sensitive activities. A set of nine genes that included GPCR11, cadherin 11, annexin A1, vimentin, lactate dehydrogenase B (upregulated in MDA-MB-231) and GREB1, S100A8, amyloid β precursor protein, claudin 3 and cadherin 1 (downregulated in MDA-MB-231) were sufficient to distinguish MDA-MB-231 from MCF7 cells. The downregulation of a set of transcripts for proteins involved in cell–cell interaction indicated these transcripts as potential markers for invasiveness that can be detected by methylation-specific PCR. The proteomic profiles indicated altered abundance of fewer proteins as compared to transcript profiles. Antisense knockdown of selected transcripts led to inhibition of cell proliferation that was accompanied by altered proteomic profiles. The proteomic profiles of antisense transfectants suggest the involvement of peptidyl-prolyl isomerase, Raf kinase inhibitor and 80 kDa protein kinase C substrate in mediating the inhibition of cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Akiri G, Sabo E, Dafni H, Vadasz Z, Kartvelishvily Y, Gan N et al. (2003). Cancer Res 63: 1657–1666.

  • Alpan RS, Sparvero S, Pardee AB . (1996). Mol Med 2: 469–478.

  • Amuthan G, Biswas G, Ananadatheerthavarada HK, Vijayasarathy C, Shephard HM, Avadhani NG . (2002). Oncogene 21: 7839–7849.

  • Baskaran N, Kandpal RP, Bhargava AK, Glynn MW, Bale A, Weissman SM . (1996). Genome Res 6: 633–638.

  • Becker M, Sommer A, Kratzschmar JR, Seidel H, Pohlenz HD, Fichtner I . (2005). Mol Cancer Ther 4: 151–168.

  • Berger M, Stahl N, Del Sal G, Haupt Y . (2005). Mol Cell Biol 25: 5380–5388.

  • Bieche I, Champeme MH, Lidereau R . (1995). Clin Cancer Res 1: 123–127.

  • Campbell FC, Blamey RW, Woolfson AM, Elston CW, Hosking DJ . (1983). Br J Surg 70: 202–204.

  • Cerosaletti KM, Shapero MH, Fournier RE . (1995). Genomics 25: 226–237.

  • Costa FF, Verbisck NV, Salim AC, Ierardi DF, Pires LC, Sasahara RM et al. (2004). Oncogene 23: 1481–1488.

  • Dan S, Tsunoda T, Kitahara O, Yanagawa R, Zembutsu H, Katagiri T et al. (2002). Cancer Res 62: 1139–1147.

  • Fletcher GC, Patel S, Tyson K, Adam PJ, Schenker M, Loader JA et al. (2003). Br J Cancer 88: 579–585.

  • Fox BP, Kandpal RP . (2004). Biochem Biophys Res Commun 318: 882–892.

  • Hall J . (2005). Cancer Lett 227: 105–114.

  • Jacob AN, Baskaran N, Kandpal G, Narayan D, Bhargava AK, Kandpal RP . (1997). Somatic Cell Mol Genet 23: 83–95.

  • Johnson JP . (1991). Metast Rev 10: 11–22, Review.

  • Jones CE, Abdelraheim SR, Brown DR, Viles JH . (2004). J Biol Chem 279: 32018–32027.

  • Katoh M . (2003). Int J Mol Med 12: 3–9.

  • Keller ET, Fu Z, Yeung K, Brennan M . (2004). Cancer Lett 207: 131–137.

  • Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F et al. (2001). Nat Med 7: 673–679.

  • Kousidou OC, Roussidis AE, Theocharis AD, Karamanos NK . (2004). Anticancer Res 24: 4025–4030.

  • Lisitsyn N, Lisitsyn N, Wigler M . (1993). Science 259: 946–951.

  • Luo C, Shaw KT, Raghavan A, Aramburu J, Garcia-Cozar F, Perrino BA et al. (1996). Proc Natl Acad Sci USA 93: 8907–8912.

  • Malliri A, Collard JG . (2003). Curr Opin Cell Biol 15: 583–589.

  • Mantovani F, Gostissa M, Collavin L, Del Sal G . (2004). Cell Cycle 3: 905–911.

  • Marenholz I, Heizmann CW, Fritz G . (2004). Biochem Biophys Res Commun 322: 1111–1122.

  • Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F et al. (2000). Cell Calcium 28: 1–21.

  • Moller LB, Bukrinsky JT, Molgaard A, Paulsen M, Lund C, Tumer Z et al. (2005). Hum Mutat 26: 84–93.

  • Nagaraja GM, Kandpal RP . (2004). Biochem Biophys Res Commun 313: 654–665.

  • Pase L, Voskoboinik I, Greenough M, Camakaris J . (2004). Biochem J 378: 1031–1037.

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Nature 406: 747–752.

  • Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA et al. (2003). Cancer Res 63: 5357–5362.

  • Reiner A, Yekutieli D, Benjamini Y . (2003). Bioinformatics 19: 368–375.

  • Ridley AJ . (2004). Breast Cancer Res Treat 84: 13–19.

  • Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. (2002). N Engl J Med 346: 1937–1947.

  • Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P et al. (2000). Nat Genet 24: 227–235.

  • Shao Q, Wang H, McLachlan E, Veitch GI, Laird DW . (2005). Cancer Res 65: 2705–2711.

  • Siegel RC . (1976). J Biol Chem 251: 5786–5792.

  • Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H . (2003). Genes Dev 17: 1153–1165.

  • van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Nature 415: 530–536.

  • Warner SL, Bearss DJ, Han H, Von Hoff DD . (2003). Mol Cancer Ther 2: 589–595.

  • Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB et al. (2002). Mol Cell Biol 22: 7982–7992.

  • Wiseman A . (2005). Med Hypotheses 65: 32–34.

  • Yoshida S, Mears AJ, Friedman JS, Carter T, He S, Oh E et al. (2004). Hum Mol Genet 13: 1487–1503.

  • Yu YX, Heller A, Liehr T, Smith CC, Aurelian L . (2001). Int J Oncol 18: 905–911.

Download references

Acknowledgements

This research was supported in part by Faculty Research Award, Ames Faculty Award and a grant from the Department of Defense (RPK). We thank Dr M Hamilton for helpful discussions on proteomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Kandpal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraja, G., Othman, M., Fox, B. et al. Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene 25, 2328–2338 (2006). https://doi.org/10.1038/sj.onc.1209265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209265

Keywords

This article is cited by

Search

Quick links