Sensitized airway smooth muscle plasticity and hyperreactivity: a review

Can J Physiol Pharmacol. 2007 Jul;85(7):679-85. doi: 10.1139/Y07-061.

Abstract

To help elucidate the mechanisms underlying asthmatic bronchospasm, the goal of our research has been to determine whether airway smooth muscle (ASM) hyperreactivity was the responsible factor. We reported that in a canine model of asthma, the shortening capacity (DeltaLmax) and velocity (Vo) of in vitro sensitized muscle were significantly increased. This increase was of sufficient magnitude to account for 75% narrowing of the in vivo airway, but maximal isometric force was unchanged. This last feature has been reported by others. Under lightly loaded conditions, ASM completes 75% of its isotonic shortening within the first 2 s. Furthermore, 90% of the increased shortening of ragweed pollen-sensitized ASM (SASM), compared with control (CASM), is complete within the first 2 s. The study of shortening beyond this period will apparently not yield much useful information, and studies of isotonic shortening should be focused on this interval. Although both CASM and SASM showed plasticity and adaptation with respect to isometric force, neither muscle type showed a difference in the force developed in these phases. During isotonic shortening, no evidence of plasticity was seen, but the equilibrated SASM showed increased DeltaLmax and Vo of shortening. Molecular mechanisms of changes in Vo could result from changes in the kinetics of the myosin heavy chain ATPase. Motility assay, however, showed no changes between CASM and SASM in the ability of the purified myosin molecule (SF1) to translocate a marker actin filament. On the other hand, we found that the state of activation of the ATPase by phosphorylation of smooth muscle myosin light chain (molecular mass 20,000 Da) was greater in the SASM. This would account for the increased Vo. Investigating the signalling pathway, we found that whereas [Ca2+]i increased in both isometric and isotonic contraction, there was no significant difference between CASM and SASM. The content and activity of calmodulin were also not different between the 2 muscles. Nevertheless, we did find that content and total activity of smooth muscle myosin light chain kinase (smMLCK) and the abundance of its message were greater; this would explain the increased MLC20 phosphorylation. The binding affinity between Ca2+ and calmodulin and between 4 Ca2+ calmodulin and smMLCK remains to be studied. We conclude that SASM shows increased isotonic shortening capacity and velocity. It also shows increased content and total activity of smMLCK, which is consistent with the increased shortening. Plasticity produced by oscillation is not seen in the shortening muscle, although it is seen with respect to force development. It did not modulate the behaviour of the sensitized muscle.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Asthma / metabolism
  • Asthma / physiopathology*
  • Bronchial Hyperreactivity / metabolism
  • Bronchial Hyperreactivity / physiopathology*
  • Dogs
  • Humans
  • Models, Biological
  • Muscle Contraction / physiology
  • Muscle Proteins / metabolism
  • Muscle, Smooth / physiology
  • Muscle, Smooth / physiopathology*

Substances

  • Muscle Proteins